# NOAA Technical Memorandum NMFS F/NWC-55 

Data Report: 1978 Bottom Trawl Survey of Eastern Bering Sea Groundfish

by<br>Michael S. Bohle<br>and<br>Richard G. Bakkala

March 1984
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Marine Fisheries Service

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and has not received complete formal review, editorial control, or detailed editing.

## THIS PAGE INTENTIONALLY LEFT BLANK


#### Abstract

This data report describes results of a 1978 resource assessment survey for groundfish in the eastern Bering Sea. The report describes methods used and summarizes results in the form of a series of tables and figures and in data appendices. Summarized in the results section are a list of species taken during the survey, abundance estimates of major taxonomic groups of fish and invertebrates, and rankings of individual species of groundfish in terms of relative abundance. For principal species of groundfish, geographic distributions and size and age composition are illustrated and abundance estimates given. The appendices contain the detailed station and catch data and computer listings showing abundance estimates and biological characteristics of the sampled populations of principal species of groundfish.


## THIS PAGE INTENTIONALLY LEFT BLANK

## TABLE OF CONTENTS

Page
Introduction ..... 1
Methods ..... 2
Survey Area ..... 2
Vessels and Fishing Gear ..... 4
Data Collection and Sampling Methods ..... 5
Data Analysis ..... 8
Results ..... 9
Haul and Catch Data ..... 9
Environmental Conditions ..... 9
Species Taken ..... 9
Abundance and Distribution of Major Fish Groups ..... 9
Relative Importance of Individual Fish Species ..... 16
Abundance, Distribution, and Size and Age Composition of Principal
Fish Species ..... 26
References ..... 65
List of Appendices ..... 67
Appendix A. Station and Catch Data, 1978 Eastern Bering Sea Demersal
Trawl Survey ..... 68
Appendix B. Rank Order of Relative Abundance for Fish and Invertebrates. ..... 100
Appendix C. Population and Biomass Estimates for Principal Species of Fish ..... 109
Appendix D. Estimates of Population Numbers by Sex and Size Group for
Principal Species of Fish ..... 120
Appendix E. Age Composition Estimates for Principal Species of Fish ..... 137
Appendix F. Age-Length Keys for Principal Species of Fish ..... 147

## INTRODUCTION

A demersal trawl survey of the-eastern Bering Sea was conducted from May to August 1978 by the Resource Assessment and Conservation Engineering Division (RACE) of the Northwest and Alaska Fisheries Center (NWAFC). Two research vessels were employed to assess the abundance and biological condition of commercially important groundfish and shellfish resources.

Annual demersal trawl surveys have been conducted by the NWAFC in the Bering Sea since 1955. Until 1970 the purpose of these surveys was to study shellfish; but in 1971, data collections were broadened to incorporate studies of groundfish. Prior to 1975, the survey area was limited to the southeastern shelf area. In 1975 and 1976 the survey area was expanded to include a major portion of the eastern Bering Sea in order to provide the Bureau of Land Management with comprehensive fishery resource information with respect to areas being considered for development of potential offshore oil and natural gas reserves (Pereyra et-al. 1976; Smith and Bakkala 1982). The 1978 survey, although smaller in scope than the comprehensive surveys of 1975 and 1976 , covered a substantial portion of the eastern Bering Sea shelf.

This report describes results of the 1978 survey for groundfish. The findings are presented in three main sections: 1) methods used during the survey; 2) results, with emphasis on distribution, abundance estimates, and biological characteristics of sampled populations of commercially important groundfish; and 3) the appendices which present basic station and catch data and computer-generated analyses of the data.

Results from the 1978 survey for shellfish are presented in reports issued by the Kodiak facility of the NWAFC (Otto et al. 1979a, 1979b).

Survey Area

In planning the 1978 survey, the basic stratification system established for the baseline survey of 1975 was retained to facilitate comparisons of survey results. However, in 1978 subareas $3 \mathrm{~N}, 4 \mathrm{~N}$, and 4 S were only partially sampled and were, therefore, reduced in area from those of 1975 (Fig. 1). A further difference from the 1975 stratification was the addition in 1978 of subarea 5 to incorporate sampling in the vicinity of St. Matthew Island. Sampling density was fairly uniform throughout the survey area averaging $1,450 \mathrm{~km}^{2}$ per station (Table 1).

Table 1 .--Size of subareas used during the 1978 demersal trawl survey and sampling densities by subarea (see Fig. 1).

| Subarea |  |  | $\begin{aligned} & \text { Area } \\ & \left(\mathrm{km}^{2}\right) \\ & \hline \end{aligned}$ | ```Proportion of total area``` | Sampling density |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | No. stns. | $\mathrm{km}^{2} / \mathrm{stn}$. |
| 1 |  |  | 83,368 | 0.244 | 50 | 1,667 |
| 2 |  |  | 60,965 | 0.178 | 45 | 1,355 |
|  | Subdivision | 3 N | 25,070 | 0.073 | 21 | 1,194 |
|  | Subdivision |  | 79,234 | 0.231 | 55 | 1,441 |
| 4 | Subdivision | 4N | 22,367 | 0.065 | 16 | 1,398 |
|  | Subdivisioñ |  | 49,322 | 0.144 | 35 | 1,409 |
| 5 |  |  | 21,977 | 0.064 | 14 | 1,570 |
|  | Total survey | area | 342,303 | 1.000 | 236 | 1,450 |



## Vessels and Fishing Gear

The two vessels participating in the survey were the NOAA ship Oregon and the chartered commercial vessel Paragon II (Table 2). The trawl gear used by both vessels was the 400 -mesh eastern trawl, the dimensions of which are given in Table 3.

Table 2 .--Vessels participating in the 1978 demersal trawl survey.

| Vessel | Overall length (m) | Gross tonnage | Horsepower | Survey period |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Start | Finish |
| Orégon | 30.4 | 219 | 600 | 15 May | 9 July |
| Paragon II | 33.5 | 196 | 1,125 | 15 June | 18 August |

Table 3.--Characteristics and dimensions of the 400-mesh eastern trawl.


Relative fishing powers between the two vessels were determined from side-by-side trawling experiments. A procedure developed by Geisser and Eddy (1979) was employed to determine if the mean catches per unit effort ( $\overline{\text { CPUE }}$ ) for a given species came from the same or distinct populations. If CPUE values we're determined to come from the same species population, then the -vessels were. considered to have equal fishing powers for that species. If, however, $\overline{C P U E}$ values were determined to come from distinct populations, the vessel having the greater

CPUE was considered to more accurately represent the actual abundance of this species. In the analyses of the data for those species in which fishing powers were significantly different, catches of the less effective vessel were adjusted to those of the more effective vessel by the ratio of CPUE values determined from the comparative fishing -experiments.

Results of the comparative trawling experiments are shown in Table 4. The Geisser and Eddy (1979) procedure showed that the Paragon II was more efficient than the Oregon in catching walleye pollock (Theragra chalcogramma) and sablefish (Anoplopoma fimbria). Catches of these species by the Oregon were therefore adjusted to those of the Paragon II by the ratios in Table 4.

## Data Collection and Sampling Methods

Sampling methods used during the survey are described in detail by Smith and Bakkala (1982). In summary, tows were limited to 30 min. Total catches weighing up to about $1,150 \mathrm{~kg}(2,500 \mathrm{lb})$ were processed completely. For catches weighing more than $1,150 \mathrm{~kg}$, a portion (split) of the catch was processed and the weights and numbers from the sampled portion expanded to the total catch. Catches were sorted into baskets by species and each basket was weighed to the nearest 0.5 l.b. Numbers of each species of fish and invertebrate were determined by counting all or a representative subsample of the total catch.

Commercially important species of fish were randomly subsampled for purposes of determining their. size composition within that tow. Scales or otoliths were collected from most of these same species for age determination. The age samples for each species were stratified by sex and size-class. The approximate numbers of length-frequencies and age samples taken during the 1978 survey are given in Table 5.

Table $4 .--M e a n$ catch rates of species and species groups taken during comparative (side-by-side) fishing experiments to measure relative fishing powers of the Oregon and Paragon II.

| Species | Number of stations at which species were caughta |  | Mean catch rates$\qquad$ (kg/ha) |  | Ratio of catch rates |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Oregon | Paragon II | Oregon | Paragon II | Oregon/Paragon II |
| Walleye pollock | 26 | 26 | 31.72 | 63.86 | $0.467^{\text {b }}$ |
| Pacific cod | 23 | 24 | 5.77 | 90.65 | 0.060 |
| Sablefish | 5 | 9 | 0.03 | 0.09 | $0.381{ }^{\text {b }}$ |
| Atka mackerel | 2 | 1 | $<0.01$ | 0.01 | 2.490 |
| Pacific ocean perch | 0 | 0 | - | . - | - |
| Pacific herring | 0 | 7 | - | 0.24 | - |
| Yellowfin sole | 18 | 21 | 47.77 | 49.51 | 0.930 |
| Rock sole | 20 | 21 | 2.85 | 5.16 | 0.586 |
| Flathead sole | 25 | 25 | 5.37 | 4.18 | 1.236 |
| Alaska plaice | 16 | 16 | 2.21 | 3.18 | 0.643 |
| Greenland turbot | 17 | 16 | 1.20 | 1.71 | 0.676 |
| Arrowtooth flounder | 17 | 17 | 2.88 | 2.84 | 1.026 |
| Pacific halibut | 8 | 9 | 0.34 | 0.16 | 2.234 |
| Other flounders | 11 | 14 | 0.62 | 0.32 | 2.043 |
| Smelts | 4 | 6 | $<0.01$ | 0.01 | 0.474 |
| Sculpins | 26 | 26 | 5.00 | 6.90 | 0.707 |
| Snailfishes | 5 | 4 | 0.08 | 0.02 | 3.099 |
| Poachers | 18 | 19 | 0.23 | 0.30 | 0.694 |
| Eelpouts | 21 | 22 | 5.26 | 5.02 | 1.089 |
| Skates | 15 | 15 | 2.61 | 1.49 | 1.807 |
| Other fish | 9 | 0 | 0.05 | - | - |

${ }^{a}$ A total of 26 side-by-side comparative trawls were successfully completed by the Oregon and Paragon II. The comparative trawling was conducted in subarea 1 (6 trawls), subarea 2 (16 trawls), and subarea 3 S (4 trawls). See Appendix A-2 for geographical locations.
${ }^{\mathrm{b}}$ Geisser and Eddy (1979) procedure indicates that the two vessels sampled distinct populations.

Table 5.--Approximate numbers of fish measured and age structures collected during the 1978 survey.
$\left.\begin{array}{l}\text { Species } \\ \text { Number } \\ \text { measured }\end{array} \quad \begin{array}{c}\text { Number of age } \\ \text { structures collected }\end{array}\right]$

## Data Analysis

Methods used in analyzing the data collected are described in detail in Smith and Bakkala (1982). Briefly, catches at each station were standardized to a basic sampling unit. In surveys prior to 1978, the sampling unit was in terms of kilograms per kilometer (kg/km) trawled. In 1978 and for subsequent analyses the sampling unit is in terms of kilograms per hectare (kg/ha). Mean CPUE values for each species and stratum were computed from the standardized catch rates and then summed over strata after being weighted by each stratum area. This yielded catch rates by species for the entire survey area. Standing stock (biomass) estimates were derived using the area swept" method described by Alverson and Pereyra (1969). These estimates are not a true measure of biomass of fish populations within the survey area, but rather a measure of the trawl available biomass. Some fish come within the influence of the trawl gear but avoid capture. Semidemersal species are known to range above the effective sampling depth of the gear. Therefore, biomass estimates may be substantially underestimated, especially for species such as pollock, herring, and the smelts but closer to the true values for bottom tending species such as the flatfish.

The size composition of the sampled populations was determined by first expanding the subsample numbers by sex and size-classes from a catch to the total catch par standard sampling unit. The individual station data were then expanded to their respective strata and the stratum totals then summed to give estimates of the size canposition for the whole survey area.

Age composition estimates were derived by applying the age-length keys produced from age structure samples stratified by sex and size-class to the computed population length-frequency distributions. The aging of commercially
important fish species, except Pacific cod, was accomplished through examination of otoliths. The aging of Pacific cod, Gadus macrocephalus, was carried out using a computer program which applies an iterative procedure to fit normal curves to the modes in the length-frequency distribution as described by MacDonald and Pitcher (1979).

RESULTS

Haul and Catch Data

Appendix A contains a listing of all station and catch data. Station data include, the haul location and depth, distance fished, and surface and bottom water temperatures. Catch data give the weight of each species caught at each station.

## Environmental Conditions

Surface and bottom temperature isotherms observed during the 1978 survey are shown in Figures 2 and 3 ; means were $6.4^{\circ} \mathrm{C}$ and $3.2^{\circ} \mathrm{C}$, respectively.

Environmental conditions in the eastern Bering Sea are characterized by cycles of warm and cold periods (Ingraham 1981). Figure 4 illustrates the annual changes in mean- bottom temperature in the southeastern Bering Sea since -1963. Mean bottom temperatures for the summer months of 1971-76 were relatively cold with the exception of 1973. The summer months of 1977-81, however, were relatively warm. Thus the 1978 survey was conducted during a relatively warm part of the cycle.

Species Taken
Approximately 72 species of fish from 20 families were identified during the 1978 survey (Table 6).

Abundance and Distribution of Major Fish Groups

Estimates of apparent abundance by weight (biomass) of all fish and invertebrates taken in the survey area are given in Table 7. Of the total biomass




Figure $4 .--M e a n$ bottom temperatures in the southeast Bering Sea based on data from Japanese (Coachman and Charnell 1979) and NWAFC research vessel data (data on file at the Northwest and Alaska Fisheries Center, Seattle, WA 98112-2097).

```
Table 6.--List of fish species collected in the eastern Bering Sea during
    the }1978\mathrm{ survey.'
```



## ZOARCIDAE

Zoarcidae sp.
Bothrocara brunneum b
Lycodes palearis
Lycodes turneri
Lycodes diapterus
Lycodes brevipes

Eelpout unidentified
Twoline eelpout b
Wattled eelpout
polar eelpout
Black eelpout
Shortfin eelpout

MACROUR IDAE

Macrouridae sp.
Albatrossia (Coryphoehoides) pectoralis b

Grenadier unidentified
Giant grenadier b

Table 6.--Continued:
species $\quad$ Common Name

SCORPAENIDAE

| Sebastes sp. | Rockfish unidentified |
| :---: | :---: |
| Sebastes alutus | Pacific ocean perch |
| Sebastes polyspinis | Northern rockfish |
| Sebastolobus alascanus | Shortspine thornyhead |

HEXAGR AMMIDAE
$\frac{\text { Pleurogrammus }}{\text { Hexagrammos stenterygius }}$

Anoplopoma fimbria

Cottidae sp.
Icelinus borealis
Gymnocanthus sp.
Gymnocanthus pistilliger ${ }^{b}$
Gymnocanthus galeatus
Artediellus sp.
Malacocottus kincaidi
Hemilepidotus sp.
Hemilepidotus hemilepidotus
Hemilepidotus jordani
Melletes papilio
Triglops sp.
Triglops pingeli
Microcottus sellaris
Myoxocephalus polyacanthocephalus
Myoxocephalus jaok
MYoxocephalus sp.
Dasycottus setiger
Blepsias bilobus
Nautichthys pribilovius
Nautichthys robustus
Icelus spiniger

## ANOPLOPOMATIDAE

COTTIDAE
Atka mackerel
Whitespotted greenling

COTTIDAE
Sablefish
Sculpin unidentified
Northern sculpin
Sculpin unidentified
Threaded sculpin
Armorhead sculpin
Sculpin unidentified
Blackfin sculpin
Irish lord unidentified
Red Irish lord
Yellow Irish lord
Butterfly sculpin
Sculpin unidentified
Ribbed sculpin
Brightbelly sculpin
Great sculpin
Plain sculpin
Sculpin unidentified
Spinyhead sculpin
Crested sculpin
Eyeshade sculpin
Shortmast sculpin
Thorny sculpin

Sculpin unidentified Northern sculpin Sculpin unidentified Threaded sculpin $b$ Armorhead sculp'in Sculpin unidentified Blackfin sculpin Irish lord unidentified Red Irish lord Yellow Irish lord Butterfly sculpin Sculpin unidentified Ribbed sculpin Brightbelly sculpin Great sculpin Plain sculpin Sculpin unidentified Spinyhead sculpin Crested sculpin
Eyeshade sculpin
Shortmast sculpin
Thorny sculpin

AGONIDAE

Agonidae sp.
Pallasina barbata
Sarritor frenatus
Bathyagonus nigripinnis
Poacher unidentified
Tubenose poacher
Sawback poacher
Blackfin poacher

Table 6.--Continued.

| Species | Common Name |
| :---: | :---: |
|  | AGONIDAE (Continued) |
| Bathyagonus alascanus | Gray starsnout |
| Agonus acipenserinus | Sturgeon poacher |
| Aspidophoroides bartoni | Aleutian alligatorfish |
| Anoplagonus inermis | Smooth alligatorfish |
| Occella verrucosa | Warty poacher |

```
Cyclopteridae sp.
Liparis dennyi
Crystallichthys cyclospilus
Careproctus melanurus
Careproctus rastrinus b
Eumicrotremus orbis
```


## CYCLOPTERIDAE

Snailfish unidentified
Marbled snailfish
Blotched snailfish
Blacktail snailfish
Pink snailfish
Pacific spiny lumpsucker

## TRICHODONTIDAE

Trichodon trichodon Pacific sandfish

## BATHYMASTERIDAE

Bathymasteridae sp. Bathymaster signatus

Ronquil unidentified Searcher

STICHAEIDAE

Prickleback unidentified Daubed shanny
Snake prickleback
Longsnout prickleback
Decorated warbonnet

ZAPRORIDAE

Prowfish

AMMODYTIDAE

Ammodytes hexapterus
Pacific sand lance

Table 6.--Continued.
Species Common Name

## PLEURONECTIDAE

Atheresthes stomias
Reinhardtius hippoglossoides
Hippoglossus stenolepis
Hippoglossoides elassodon
Microstomus pacificus
Glyptocephalus zachirus
Limanda aspera
Limanda proboscidea
Platichthys stellatus
Lepidopsetta bilineata
Isopsetta isolepis
Pleuronectes quadrituberculatus

Arrowtooth flounder
Greenland turbot
pacific halibut
Flathead sole
Dover sole
Rex sole
Yellowfin sole
Longhead dab
Starry flounder
Rock sole
Butter sole
Alaska plaice
${ }^{a}$ Nomenclature from Robins (1980), unless otherwise noted.
buast and Hall (1972).
${ }^{\text {C Based }}$ on more recent survey data, most of the specimens identified as Lycodes turneri were probably the sparse toothed lycod (Lycodes raridens).
estimated for the survey area, fish made up $74.5 \%$ and invertebrates $25.5 \%$.
Biomass estimates for both fish and invertebrates were highest in subarea 1.

Gadids and pleuronectids accounted for a high proportion (89.3\%) of the total
fish biomass, while king (Paralithodes sp.) and Tanner (snow) crab (Chionoecetes
sp.) were the principal component (50.7\%) of the invertebrate biomass. Of the
fish groups gadids were the dominant category on the outer shelf (subareas 2, 3S,
and 3 N ) and pleuronectids were the dominant group on the inner shelf (subareas
1, 4S, and 5).
Relative Importance of Individual Fish Species

Mean catch rates for the 20 most abundant species of fish caught throughout the survey area are listed in Table 8 and for individual subareas in Tables 9-15. The 20 most abundant species of fish accounted for $72.8 \%$ of the total catch of fish and invertebrates. Their contribution ranged from $87.2 \%$ in
3.10 .1

Table 7...Summary of biomasses available to the trawl for major taxonomic groups, 1978 summer survey. ${ }^{\text {a }}$

| Taxa | Estimated bionass for total survey area ( $t$ ) | Propor tion of total biomass | Estimated biomass by subarea ( t ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3N | 35 | 4N | 4 S | 5 |
| Gadrdae (cods) | 2,623,610 | 0.352 | 312,807 | 777,541 | 290,269 | 1,007,008 | 114,614 | 112,821 | 8,551 |
| Pleuronectidae <br> (flounders) | 2,336,202 | 0.313 | 1,156,195 | 164,768 | 22,543 | 75,52日 | 60,018 | 845,687 | 11,464 |
| Cottidae (sculpins) | 293,835 | 0.039 | 123,029 | 60,353 | 4,088 | 19,143 | 14,830 | 65,189 | 7,202 |
| Zoarcidae (eelpouts) | 194,829 | 0.026 | 2,938 | 3日,337 | 41,578 | 48,568 | 10,021 | 12,853 | 40,532 |
| Rajidae (skates). | 47,586 | 0.006 | 3,030 | 19,634 | 9,358 | 11,915 | 1,179 | 2,450 | 20 |
| Agonidae (poachers) | 18,165 | 0.002 | 10,039 | 2,246 | 23 | 459 | 466 | 4,918 | 12 |
| Other fish | 40,071 | 0.005 | 14,178 | 14,474 | 925 | 3,330 | 2,791 | 1,499 | 2,877 |
| Total fish | 5,554,298 | 0.745 | 1,622,216 | 1,077,353 | 368,784 | 1,165,951 | 203,919 | 1,045,417 | 70,658 |
| Porifera (sponges) | 141.287 | 0.019 | 133.163 | 7,544 | 2 | 21 | 558 | 0 | 0 |
| Coelenterata (coelenterates) | 11,789 | 0.002 | 637 | 1,897 | 73 | 330 | 644 | 8,172 | 36 |
| Mollusca | 134,642 | 0.018 | 19.811 | 15,814 | 12,173 | . 21,100 | 11,755 | 49,966 | 4,023 |
| Gastropoda (snails) | 123,335 | 0.016 | 19,129 | 10,878 | 9,166 | 18,801 | 11,460 | 49,901 | 4,000 |
| pelecypoda (bivalves) | 1,023 | $<0.001$ | 421 | 19 | 11 | 189 | 295 | 65 | 23 |
| Cephalopoda <br> (squids \& octopus) | 10,284 | 0.001 | 261 | 4.917 | 2,996 | 2,110 | 0 | 0 | 0 |
| Crustacea | 1,132,377 | 0.152 | 391,471 | 171,093 | 24,933 | 193,889 | 71,047 | 213,141 | 66,803 |
| Total crabs | 1,111,290 | 0.149 | 391,374 | 169,583 | 20,863 | 178,927 | 70,647 | 213,108 | 66,787 |
| $\frac{\text { Chionoecetes } s p}{\text { (snow (Tanner) crab) }}$ | 556.109 | 0.075 | 82,244 | 85,374 | 18,627 | 125,127 | 49,317 | 144,839 | 50,582 |
| $\frac{\text { Paralithodes }}{(k i n g \text { crab })} \text { sp. }$ | 406,686 | 0.054 | 277,874 | 67,119 | 661 | 30,029 | 2,585 | 21,057 | 7.360 |
| Other crabs | 148,494 | 0.020 | 31,256 | 17.090 | 1,575 | 23,771 | 18,745 | 47,212 | 8,845 |
| Total shrimp | 21.080 | 0.003 | 97 | 1.508 | 4,069 | 14,957 | 400 | 33 | 16 |
| Other crustacea | 7 | $<0.001$ | 0 | 2 | 0 | 5 | 0 | 0 | 0 |
| Echinodermata | 383,654 | 0.051 | 201,310 | 22,147 | 16,744 | 42,677 | 14,239 | 79,415 | 7.121 |
| Asteroidea (starfish) | 288,209 | 0.039 | 170.792 | 4,545 | 12,105 | 19,670 | 11,156 | 67,651 | 2,289 |
| ```Echinoldea (sea urchins, etc.)``` | 13,303 | 0.002 | 11,386 | 935 | 70 | 911 | 2 | 0 | 0 |
| Ophiuroidea <br> (brittlestars) | 68,267 | 0.009 | 5,443 | 16,523 | 4,568 | 22,096 | 3,081 | 11,724 | 4,832 |
| Holothuroidea (sea cucumbers) | 13,875 | 0.002 | 13.689 | 144 | 1 | 0 | 0 | 40 | 0 |
| Ascidiacea | 52,949 | 0.007 | 22,186 | 0 | 0 | 1 | 15.079 | 15,378 | 305 |
| Other invertebrates. | 41,929 | 0.006 | 21 | 53 | 14 | 13 | 2,093 | 36,110 | 3,623 |
| Total invertebrates | 1,898,627 | 0.255 | 768,599 | 218,548 | 53,939 | 258,031 | 115,415 | 402,182 | 81,911 |
| Total catch | 7,452,925 | 1.000 | 2,390,815 | 1,295,901 | 422,723 | 1,423,982 | 319,334 | 1,447,599 | 152,569 |
| $\begin{aligned} & \text { Geographical area } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$ | 342,303 |  | 83,368 | 60,965 | 25,070 | 79,234 | 22,367 | 49,322 | 21,977 |

${ }^{\text {a }}$ Minor differences in sums of biomass estimates by subarea and totals due to rounding.

Table 8 .--Rank order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, all subareas combined.

| Rank | Species | $\begin{aligned} & \text { CPUE } \\ & \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{aligned}$ | ```Proportion of total CPUE``` | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Walleye pollock | 67.46 | 0.310 | 0.310 |
| 2 | Yellowfin sole | 49.81 | 0.229 | 0.539 |
| 3 | Pacific cod | 9.20 | 0.042 | 0.581 |
| 4 | Rock sole | 5.19 | 0.024 | 0.605 |
| 5 | Alaska plaice | 4.83 | 0.022 | 0.627 |
| 6 | Plain sculpin | 3.95 | 0.018 | 0.645 |
| 7 | Greenland turbot | 3.16 | 0.015 | 0.660 |
| 8 | Flathead sole | 2.50 | 0.011 | 0.671 |
| 9 | Wattled eelpout | 1.56 | 0.007 | 0.678 |
| 10 | Shortfin eelpout | 1.47 | 0.007 | 0.685 |
| 11 | polar eelpout | 1.38 | 0.006 | 0.691 |
| 12 | Arrowtooth flounder | 1. 32 | 0.006 | 0.697 |
| 13 | Skate unidentified | 1.29 | 0.006 | 0.703 |
| 14 | Eelpout unidentified | 1.28 | 0.006 | 0.709 |
| 15 | Yellow Irish lord | 0.93 | 0.004 | 0.713 |
| 16 | Longhead dab | 0.85 | 0.004 | 0.717 |
| 17 | Great sculpin | 0.82 | 0.004 | 0.721 |
| 18 | Sculpin unidentified | 0.70 | 0.003 | 0.724 |
| 19 | Pacific halibut | 0.52 | 0.002 | 0.726 |
| 20 | Myoxocephalus sp. | 0.52 | 0.002 | 0.728 |

[^0]Table 9.--Rank order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, subarea 1.

| Rank | Species | $\begin{aligned} & \text { CPUE } \\ & \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{aligned}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Yellowfin sole | 112.51 | 0.392 | 0.392 |
| 2 | Walleye pollock | 28.66 | 0.100 | 0.492 |
| 3 | Rock sole | 15.26 | 0.053 | 0.545 |
| 4 | Plain sculpin | 12.44 | 0.043 | 0.588 |
| 5 | Pacific cod | 8.87 | 0.031 | 0.619 |
| 6 | Alaska plaice | 4.59 | 0.016 | 0.635 |
| 7 | Longhead dab | 2.96 | 0.010 | 0.645 |
| 8 | Flathead sole | 1.86 | 0.006 | 0.651 |
| 9 | Sturgeon poacher | 1.19 | 0.004 | 0.655 |
| 10 | Sablefish | 0.99 | 0.003 | 0.658 |
| 11 | Pacific halibut | 0.94 | 0.003 | 0.661 |
| 12 | Threaded sculpin | 0.61 | 0.002 | 0.663 |
| 13 | Myoxocephalus sp. | 0.60 | 0.002 | 0.665 |
| 14 | Gymnocanthus sp. | 0.48 | 0.002 | 0.667 |
| 15 | Greenland turbot | 0.39 | 0.001 | 0.668 |
| 16 | Skate unidentified | 0.36 | 0.001 | 0.669 |
| 17 | Wattled eelpout | 0.35 | 0.001 | 0.670 |
| 18 | Whitespotted greenling | 0.30 | 0.001 | 0.671 |
| 19 | Great sculpin | 0.27 | 0.001 | 0.672 |
| 20 | Eulachon | 0.16 | 0.001 | 0.673 |

[^1]Table. $10 .--$ Rank order of abundance of the 20 most abundant species of fish
taken during the 1978 demersal trawl survey, subarea 2.

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{gathered}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Walleye pollock | 99.27 | 0.467 | 0.467 |
| 2 | Pacific cod | 28.29 | 0.133 | 0.600 |
| 3 | Flathead sole | 7.89 | 0.037 | 0.637 |
| 4 | Arrowtooth flounder | 6.21 | 0.029 | 0.666 |
| 5 | Yellowfin sole | 6.07 | 0.028 | 0.694 |
| 6 | Eelpout unidentified | 4.68 | 0.022 | 0.716 |
| 7 | Yellow Irish lord | 3.43 | 0.016 | 0.732 |
| 8 | Rock sole | 3.25 | 0.015 | 0.747 |
| 9 | Skate unidentified | 3.17 | 0.015 | 0.762 |
| 10 | Northern sculpin | 2.13 | 0.010 | 0.772 |
| 11 | Sculpin unidentified | 1.68 | 0.008 | 0.780 |
| 12 | Pacific halibut | 1.42 | 0.007 | 0.787 |
| 13 | Greenland turbot | 1.29 | 0.006 | 0.793 |
| 14 | Shortfin eelpout | 1.05 | 0.005 | 0.798 |
| 15 | Armorhead sculpin | 0.89 | 0.004 | 0.802 |
| 16 | Sablefish | 0.86 | 0.004 | 0.806 |
| 17 | Searcher | 0.67 | 0.003 | 0.809 |
| 18 | Alaska plaice | 0.60 | 0.003 | 0.812 |
| 19 | Eulachon | 0.57 | 0.003 | 0.815 |
| 20 | Wattled eelpout | 0.55 | $0.003$ | 0.818 |

[^2]Table 11 .--Rank order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, subarea 3N.

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{h} \mathrm{a}^{\mathrm{a}}\right) \end{gathered}$ | ```Proportion of total CPUE b``` | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Walleye pollock | 114.20 | 0.677 | 0.677 |
| 2 | Shortfin eelpout | 13.22 | 0.078 | 0.755 |
| 3 | Greenland turbot | 6.92 | 0.041 | 0.796 |
| 4 | Skate unidentified | 3.73 | 0.022 | 0.818 |
| 5 | Wattled eelpout | 3.09 | 0.018 | 0.836 |
| 6 | Flathead sole | 1.71 | 0.010 | 0.846 |
| 7 | Pacific cod | 1.60 | 0.009 | 0.855 |
| 8 | Thorny sculpin | 1.23 | 0.007 | 0.862 |
| 9 | Arrowtooth flounder | 0.29 | 0.002 | 0.864 |
| 10 | polar eelpout | 0.28 | 0.002 | 0.866 |
| 11 | Pink snailfish | 0.21 | 0.001 | 0.867 |
| 12 | Bigmouth sculpin | 0.13 | 0.001 | 0.868 |
| 13 | Searcher | 0.10 | 0.001 | 0.869 |
| 14 | Spinyhead sculpin | 0.09 | $<0.001$ | 0.870 |
| 15 | Irish lord unidentified | 0.06 | <0.001 | 0.870 |
| 16 | Yellow Irish lord | 0.06 | $<0.001$ | 0.871 |
| 17 | Great sculpin | 0.04 | $<0.001$ | 0.871 |
| 18 | Rock sole | 0.04 | $<0.001$ | 0.871 |
| 19 | Marbled snailfish | 0.04 | <0.001 | 0.872 |
| 20 | Pacific halibut | 0.02 | $<0.001$ | 0.872 |

[^3]Table 12 .--Rank order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, subarea 3S.

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{ha} \mathrm{a}^{\mathrm{a}}\right) \end{gathered}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Walleye pollock | 124.54 | 0.693 | 0.693 |
| 2 | Greenland turbot | 6.20 | 0.034 | 0.727 |
| 3 | Wattled eelpout | 2.85 | 0.016 | 0.743 |
| 4 | Pacific cod | 2.57 | 0.014 | 0.757 |
| 5 | Eelpout unidentified | 1.71 | 0.009 | 0.766 |
| 6 | Shortfin eelpout | 1.38 | 0.008 | 0.774 |
| 7 | Skate unidentified | 1.32 | 0.007 | 0.781 |
| 8 | Flathead sole | 1.17 | 0.006 | 0.787 |
| 9 | Arrowtooth flounder | 0.75 | 0.004 | 0.791 |
| 10 | $\therefore$ Rock sole | 0.70 | 0.004 | 0.795 |
| 11 | Yellow Irish lord | 0.61 | 0.003 | 0.798 |
| 12 | Yellowfin sole | 0.57 | 0.003 | 0.801 |
| 13 | Great sculpin | 0.44 | 0.002 | 0.803 |
| 14 | Sculpin unidentified | 0.34 | 0.002 | 0.805 |
| 15 | Thorny sculpin | 0.27 | 0.001 | 0.806 |
| 16 | Bigmouth sculpin | 0.26 | 0.001 | 0.807 |
| 17 | Spinyhead sculpin | 0.23 | 0.001 | 0.808 |
| 18 | Polar eelpout | 0.19 | 0.001 | 0.809 |
| 19 | Sandpaper skate | 0.19 | 0.001 | 0.810 |
| 20 | Marbled snailfish | 0.09 | $<0.001$ | 0.810 |

[^4]Table 13.--Rank order of abundance of the 20 most abundant species of fish takenduring the 1978 demersal trawl survey, subarea 4 N .

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{gathered}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Walleye pollock | 49.17 | 0.344 | 0.344 |
| 2 | Yellowfin sole | 13.58 | 0.095 | 0.439 |
| 3 | Alaska plaice | 7.47 | 0.052 | 0.491 |
| 4 | Greenland turbot | 4.11 | 0.029 | 0.520 |
| 5 | polar eelpout | 2.82 | 0.020 | 0.540 |
| 6 | Plain sculpin | 2.43 | 0.017 | 0.557 |
| 7 | Pacific cod | 2.08 | 0.014 | 0.571 |
| 8 | Wattled eelpout | 1.66 | 0.012 | 0.583 |
| 9 | Irish lord unidentified | 1.46 | 0.010 | 0.593 |
| 10 | Yellow Irish lord | 1.36 | 0.009 | 0.602 |
| 11 | Rock sole | 1.23 | 0.009 | 0.611 |
| 12 | Marbled snailfish | 0.93 | 0.006 | 0.617 |
| 13 | Great sculpin | 0.90 | 0.006 | 0.623 |
| 14 | Flathead sole | 0.45 | 0.003 | 0.626 |
| 15 | Skate unidentified | 0.32 | 0.002 | 0.628 |
| 16 | Sandpaper skate | 0.21 | 0.001 | 0.629 |
| 17 | Pacific spiny lumpsucker | 0.20 | 0.001 | 0.630 |
| 18 | Sturgeon poacher | 0.20 | 0.001 | 0.631 |
| 19 | Sculpin unidentified | 0.17 | 0.001 | 0.632 |
| 20 | Triglops sp. | 0.15 | 0.001 | 0.633 |

[^5]Table 14 .--Rank order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, subarea 4S.

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{gathered}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Yellowfin sole | 140.93 | 0.480 | 0.480 |
| 2 | Alaska plaice | 21.18 | 0.072 | 0.552 |
| 3 | Walleye pollock | 15.05 | 0.051 | 0.603 |
| 4 | Pacific cod | 7.83 | 0.027 | 0.630 |
| 5 | Plain sculpin | 5.06 | 0.017 | 0.647 |
| 6 | Rock sole | 4.51 | 0.015 | 0.662 |
| 7 | Greenland turbot | 2.58 | 0.009 | 0.671 |
| 8 | Great sculpin | 2.54 | 0.009 | 0.680 |
| 9 | Wattled eelpout | 2.35 | 0.008 | 0.688 |
| 10 | Myoxocephalus sp. | 2.30 | 0.008 | 0.696 |
| 11 | Sculpin unidentified | 1.91 | 0.006 | 0.702 |
| 12 | Flathead sole | 1.25 | 0.004 | 0.706 |
| 13 | Sturgeon poacher | 0.99 | 0.003 | 0.709 |
| 14 | Gymnocanthus sp. | 0.99 | 0.003 | 0.712 |
| 15 | Longhead dab | 0.86 | 0.003 | 0.715 |
| 16 | Yellow Irish lord | 0.36 | 0.001 | 0.716 |
| 17 | Sandpaper skate | 0.26 | 0.001 | 0.717 |
| 18 | Eelpout unidentified | 0.26 | 0.001 | 0.718 |
| 19 | Skate unidentified | 0.23 | 0.001 | 0.719 |
| 20 | Pacific halibut | 0.16 | <0.001 | 0.719 |

[^6]Table $15 .--R a n k$ order of abundance of the 20 most abundant species of fish taken during the 1978 demersal trawl survey, subarea 5.

| Rank | Species | $\begin{gathered} \text { CPUE } \\ \left(\mathrm{kg} / \mathrm{ha}^{\mathrm{a}}\right) \end{gathered}$ | Proportion of total CPUE ${ }^{\text {b }}$ | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Polar eelpout ${ }^{\text {c }}$ | 17.63 | 0.254 | 0.254 |
| 2 | Greenland turbot | 3.92 | 0.056 | 0.310 |
| 3 | Walleye pollock | 3.45 | 0.050 | 0.360 |
| 4 | Great sculpin | 1.92 | 0.028 | 0.388 |
| 5 | Irish lord unidentified | 1.33 | 0.019 | 0.407 |
| 6 | Marbled snailfish | 1.22 | 0.018 | 0.425 |
| 7 | Wattled eelpout | 0.69 | 0.010 | 0.435 |
| 8 | Alaska plaice | 0.63 | 0.009 | 0.444 |
| 9 | Flathead sole | 0.57 | 0.008 | 0.452 |
| 10 | Pacific cod | 0.44 | . 0.006 | 0.458 |
| 11 | Eelpout unidentified | 0.13 | 0.002 | 0.460 |
| 12 | Pacific halibut | 0.06 | 0.001 | 0.461 |
| 13 | Pink snailfish | 0.04 | $<0.001$ | 0.461 |
| 14 | Snake prickleback | 0.03 | $<0.001$ | 0.462 |
| 15 | Rock sole | 0.03 | $<0.001$ | 0.462 |
| 16 | Capelin | 0.01 | $<0.001$ | 0.463 |
| 17. | Sculpin unidentified | 0.01 | $<0.001$ | 0.463 |
| 18 | Triglops sp. | 0.01 | $<0.001$ | 0.463 |
| 19 | Sandpaper skate | 0.01 | $<0.001$ | 0.463 |
| 20 | Blackfin poacher | $<0.01$ | $<0.001$ | 0.463 |

[^7]subarea 3 N to $46.3 \%$ in subarea 5. Pollock, yellowfin sole, and Pacific cod ranked highest in relative abundance in the overall survey area and at least one of these species ranked highest in all subareas except subarea 5 where the polar eelpout was identified as the dominant species. However, based on more recent survey data, most of the specimens identified as polar eelpout are believed to be the sparse toothed lycod.

## Abundance, Distribution, and Size and Age Composition of Principal Fish Species

The following tables (16-34) and figures (5-33) summarize findings from the 1978 survey for the commercially important species of fish. Included, for each individual species, is a contour map showing distribution and relative abundance and a table showing abundance estimates in terms of CPUE, biomass, and population numbers.. In addition, size and age composition data are presented. More detailed data are presented in the following appendices: Appendix A - Station and catch data.

Appendix B - Rank order of relative abundance for all fish and invertebrates.
Appendix C - Population and biomass estimates for principal species of fish.
Appendix D - Estimates of population numbers by sex and size groups for principal species of fish.

Appendix E - Age composition estimates of principal species of fish.
Appendix $F$ - Age-length keys for principal species of fish.


Table 16 .--Apparent abundance and mean sizes of walleye pollock by subarea and for all subareas combined, 1978 trawl survey.


[^8]${ }^{c}$ Minor differences between sum of figures by subarea and totals are due to rounding.

## WALLEYE POLLOCK

## Outer shelf subareas

## 3N


$3 S$


2


All subareas combined
MEAN Lenctit = 24.6


## Inner shelf subareas

5

$4 N$


45


1


Figure 6.--Size composition of walleye pollock (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## WALLEYE POLLOCK

Table 17 .--Estimated population size of walleye pollock age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

| Age | Yearclass | Subareas |  |  |  |  |  |  | $\begin{gathered} \text { Alla } \\ \text { subareas } \\ \text { combined } \end{gathered}$ | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3N | 3 S | 4N | 4S | 5 |  |  |
| 1 | 1977 | 798.35 | 154.54 | 554.84 | 2006.07 | 67.55 | 1499.00 | 180.50 | 5260.84 | 0.4263 |
| 2 | 1976 | 174.64 | 165.81 | 233.61 | 1442.15 | 231.69 | 145.77 | 1.89 | 2395.56 | 0.1941 |
| 3 | 1975 | 308.85 | 381.23 | 373.56 | 1245.81 | 237.85 | 62.04 | 0.06 | 2609.39 | 0.2114 |
| 4 | 1974 | 165.76 | 331.71 | 155.32 | 535.55 | 47.87 | 18.63 | 0.13 | 1254.97 | 0.1017 |
| 5 | 1973 | 28.18 | 142.86 | 36.45 | 100.29 | 2.83 | 6.58 | 0.83 | 318.03 | 0.0258 |
| 6 | 1972 | 19.56 | 102.87 | 25.44 | 56.86 | 1.15 | 6.65 | 1.06 | 213.60 | 0.0173 |
| 7 | 1971 | 8.83 | 36.01 | 8.96 | 14.21 | 0.39 | 4.13 | 0.57 | 73.10 | 0.0059 |
| 8 | 1970 | 9.22 | 28.81 | 6.52 | 11.97 | 0.56 | 3.94 | 0.48 | 61.51 | 0.0050 |
| 9 | 1969 | 10.48 | 34.33 | 8.54 | 14.61 | 0.70 | 5.02 | 0.70 | 74.38 | 0.0060 |
| 10 | 1968 | 7.07 | 22.58 | 5.60 | 9.50 | 0.51 | 2.88 | 0.43 | 48.58 | 0.0039 |
| 11. | 1967 | 2.78 | 6.98 | 1.54 | 3.40 | 0.36 | 1.81 | 0.24 | 17.11 | 0.0014 |
| 12 | 1966 | 1.75 | 6.30 | 1.55 | 2.55 | 0.16 | 0.96 | 0.11 | 13.40 | 0.0011 |
| Ages |  | 0.13 |  |  |  |  | 0.16 |  | 0.30 | <. 0001 |
| All ages ${ }^{\text {a }}$ combined |  | 1535.62 | 1414:04 | 1411.93 | 5442.98 | 591.64 | 1757.54 | 187.00 | 12340.75 | 1.0000 |

[^9]


Table 18.--Apparent abundance and mean sizes of Pacific cod by subarea and for all subareas combined, 1978 trawl survey.

| $\begin{aligned} & \text { Sub- } \\ & \text { area } \end{aligned}$ | - Mean <br> CPUE <br> (kg/ha) | Estimated biomass ( $t$ ) | Proportion of total estimated biomass | Estimated population (millions) | proportion of total estimated population | Mean size Weight $(\mathrm{kg})$ | dividual Length (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.87 | 73,913 | 0.235 | 819.8 | 0.588 | 0.090 | 20.9 |
| 2 | 28.29 | 172,457 | 0.547 | 79.3 | 0.057 | 2.174 | 53.6 |
| 3 N | 1.60 | 4,020 | 0.013 | 4.3 | 0.003 | 0.930 | 38.1 |
| 3 S | 2.57 | 20,390 | 0.065 | 34.1 | 0.024 | 0.598 | 33.1 |
| 4 N | 2.08 | 4,648 | 0.015 | 36.7 | 0.026 | 0.127 | 20.8 |
| 4 S | 7.83 | 38,601 | 0.122 | 405.6 | 0.291 | 0.124 | 19.2 |
| 5 | 0.44 | 966 | 0.003 | 14.0 | 0.010 | 0.079 | 17.6 |
| $\begin{aligned} & \text { Nl1 sub_c } \\ & \text { areas } \\ & \text { combined } \end{aligned}$ | 9.20 | 314,995 ${ }^{\text {b }}$ | $\therefore$ | 1,393.9 | , | 0.226 | 22.6 |

[^10]
## PACIFIC COD



## 35

hean length $=33.1$



All subareas combined
hean length $=22.6$


Inner shelf subareas
5
mean Length $=17.6$


4N
mean length = $\quad$ o.b



1


Figure 9. --Size composition of Pacific cod (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## PACIFIC COD

Table 19.-- Estimated population size of Pacific cod age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish). ${ }^{\text {a }}$

| Age | Yearclass | Subareas |  |  |  |  |  |  | ```Alla subareas combined``` | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3N | 3 S | 4N | 4S | 5 |  |  |
| 1 | 1977 | 792.45 | 3.16 | 0.57 | 0.82 | 29.82 | 397.95 | 11.81 | 1268.23 | 0.9099 |
| 2 | 1976 |  | 2.41 | 1.39 | 19.76 | 6.92 |  | 2.19 | 24.17 | 0.0173 |
| 3 | 1975 | 5.64 | 3.04 | 0.74 | 7.34 |  | 7.69 |  | 32.80 | 0.0253 |
| 4 | 1974 | 17.98 | 15.62 | 1.02 | 4.26 |  |  |  | 24.81 | 0.0178 |
| 5 | 1973 | 3.73 | 31.44 | 0.26 | 1.10 |  |  |  | 23.00 | 0.0165 |
| 6 | 1972 |  | 4.80 | 0.34 | 0.50 |  |  |  | 9.78 | 0.0070 |
| 7 | 1971 |  | 10.22 |  | 0.31 |  |  |  | 2.80 | 0.0020 |
| 8 | 1970 |  | 0.98 |  |  |  |  |  | 4.24 | 0.0030 |
| 9 | 1969 |  | 4.09 |  |  |  |  |  | 2.13 | 0.0015 |
| - 10 | 1968 |  | 3.54 |  |  |  |  |  | 1.80 . | 0.0013 |
| All <br> comb | es ${ }^{\text {b }}$ | 819.80 | 79.30 | 4.32 | 34.09 | 36.74 | 405.64 | 14.00 | 1393.89 | 1.0000 |

${ }^{\text {a }}$ See text for method of deriving age composition for Pacific cod.
${ }^{\mathrm{b}}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.

## PACIFIC COD



Figure 10.-- Length and age composition of Pacific cod (sexes combined) from the overall 1978 survey area,


Table 20 .--Apparent abundance and mean sizes of sablefish by subarea and for all subareas combined, 1978 trawl survey.


[^11]
## SABLEFISH



## SABLEFISH

Table 21 .--Estimated population size of sablefish age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

| Year- | Subareas |  |  |  |  |  |  | Alla <br> subareas <br> combined | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age class | 1 | 2 | 3N | 3 S | 4N | 45 | 5 |  |  |
| 11977 | 13.53 | 0.80 |  | 0.02 |  |  |  | 14.35 | 0.3393 |
| 21976 | 19.29 | 6.59 |  | 0.22 |  |  |  | 26.09 | 0.6170 |
| 31975 | 0.39 | 0.72 |  |  |  |  |  | 1.11 | 0.0263 |
| 41974 |  | 0.64 |  |  |  |  |  | 0.64 | 0.0151 |
| 51973 |  | 0.10 |  |  |  |  |  | 0.10 | 0.0024 |
| All ages ${ }^{\text {a }}$ |  |  |  |  |  | . |  |  |  |
| combined | 33.21 | 8.85 |  | 0.24 |  |  |  | $42.29{ }^{\text {b }}$ | 1.0000 |

${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.
${ }^{b}$ Population estimates derived from ageing studies differed from those derived from biomass studies because occasionally weights and numbers were collected for this species, but no length-frequencies were taken.

## SABLEFISH




[^12]

Figure 14. --Distribution and relative abundance of yellowfin sole during the 1978 demersal trawl survey.

Table 22. --Apparent abundance and mean sizes of yellowfin sole by subarea and for all subareas combined, 1978 trawl, survey.

| $\begin{aligned} & \text { Sub- } \\ & \text { area } \end{aligned}$ | $\begin{gathered} \text { Mean } \\ \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$ | Estimated biomass (t) | ```Proportion of total estimated biomass``` | Estimated population (millions) | ```proportion of total estimated population``` | $\begin{array}{r} \text { Mean sizf } \\ \text { Weight } \\ (\mathrm{kg}) \end{array}$ | $\begin{aligned} & \text { ndividual } \\ & \begin{array}{l} \text { fenyth } \\ \text { (cm) } \end{array} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 112.51 | 937,829 | 0.550 | 7,137.8 | 0.593 | 0.131 | 22.1 |
| 2 | 6.07 | 37,006 | 0.022 | 172.2 | 0.014 | 0.215 | 26.5 |
| 3N | 0.00 | 0 | 0.000 | 0.0 | 0.000 | - | - |
| 3 S | 0.57 | 4,555 | 0.003 | 25.0 | 0.002 | 0.182 | 24.4 |
| 4 N | 13.58 | 30,367 | 0.018 | 149.0 | 0.012 | 0.204 | 25.2 |
| 45 | 140.93 | 694,943 | 0.408 | 4,561.1 | 0.379 | 0.153 | 22.9 |
| 5 | $<0.01$ | 10 | $<0.001$ | 0.1 | $<0.001$ | 0.159 | - |
| $\begin{aligned} & \text { All sub_C } \\ & \text { areas } \\ & \text { combined } \end{aligned}$ | 49.81 | 1.704,712 ${ }^{\text {b }}$ |  | 12,045.2 | - | 0.142 | 22.5 |
|  |  |  |  |  |  |  |  |

[^13]
## YELLOWFIN SOLE

Outer shelf subareas
3N


## 35



2


All subareas combined


Inner shelf subareas
5



4S


1
mean length: 22.1


Figure 15 .--Size composition of yellowfin sole (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## YELLOWFIN SOLE

Table 23.--Estimated population size of yellowfin sole age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).


[^14]

Figure 16. --Length and age composition of yellowfin sole (sexes combined) from the overall 1978 survey area.


Table 24.--Apparent abundance and mean sizes of rock sole by subarea and for all subareas combined, 1978 trawl survey.

|  |  |  | Proportion of total |  | proportion of total | Mean size | ndividual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| area | $\begin{gathered} C P U E^{a} \\ (\mathrm{~kg} / \mathrm{ha}) \end{gathered}$ | $\begin{aligned} & \text { biomass } \\ & \text { (t) } \end{aligned}$ | biomass | population (millions) | population | Weight $(\mathrm{kg})$ | $\begin{gathered} \text { Leng th } \\ (\mathrm{cm}) \\ \hline \end{gathered}$ |
| 1 | 15.26 | 127,203 | 0.716 | 633.6 | 0.762 | 0.201 | 23.6 |
| 2 | 3.25 | 19,815 | 0.111 | 84.9 | 0.102 | 0.233 | 25.8 |
| 3 N | 0.04 | 204 | 0.001 | 0.3 | <0.001 | 0.392 | - |
| 35 | 0.70 | 5,525 | 0.031 | 16.7 | . 0.020 | 0.332 | 28.7 |
| 4 N | 1.23 | 2,747 | 0.015 | 10.6 | 0.013 | 0.259 | 27.7 |
| 4S | 4.51 | 22,251 | 0.125 | 85.7 | 0.103 | 0.259 | 26.7 |
| 5 | 0.03 . | 73 | <0.001 | 0.1 | <0.001 | 0.511 | - |
| All suh_C |  |  |  |  |  |  |  |
| areas combined |  |  | , | - 0 |  |  |  |
|  | 5.19 | 177.7196 |  | 832.0 |  | 0.214 | 24.3 |

[^15]
## ROCK SOLE

## Inner shelf subareas

5


Outer shelf subareas
3N


3S
mean lengit $=29.7$


## 2



## All subareas combined





Figure 18.--size composition of rock sole (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## ROCK SOLE

Table 25.--Estimated population size of rock sole age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

| Age | Yearclass | Subareas |  |  |  |  |  |  | All ${ }^{a}$ subareas combined | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3N | 3 S | 4N | 4 S | 5 |  |  |
| 3 | 1975 | 39.52 | 2.89 |  | 0.01 |  | 0.99 |  | 43.41 | 0.0522 |
| 4 | 1974 | 163.66 | 7.19 |  | 0.20 |  | 6.24 |  | 177.29 | 0.2132 |
| 5 | 1973 | 62.52 | 8.68 |  | 0.21 | 0.01 | 4.08 |  | 75.50 | 0.0908 |
| 6 | 1972 | 27.49 | 5.91 |  | 0.45 | 0.58 | 4.30 |  | 38.73 | 0.0466 |
| 7 | 1971 | 30.86 | 5.57 |  | 1.19 | 1.19 | 6.60 |  | 45.41 | 0.0546 |
| 8 | 1970 | 99.70 | 18.14 |  | 4.40 | 3.25 | 22.46 |  | 147.96 | 0.1779 |
| 9 | . 1969 | 88.65 | 16.45 |  | 4.66 | 3.05 | 20.87 |  | 133.68 | 0.1608 |
| 10 | 1968 | 27.68 | 5.82 |  | 1.57 | 0.87 | 6.61 |  | 42.56 | 0.0512 |
| 11 | 1967 | 23.48 | 4.15 |  | 1.27 | 0.44 | 4.54 |  | 33.88 | 0.0407 |
| 12 | 1966 | 22.41 | 3.89 |  | 0.91 | 0.53 | 3.49 |  | 31.24 | 0.0376 |
| 13 | 1965 | 23.44 | 4.33 |  | 1.20 | 0.49 | 4.13 |  | 33.59 | 0.0404 |
| 14 | 1964 | 10.82 | 1.46 |  | 0.32 | 0.13 | 1.09 |  | 13.82 | 0.0166 |
| 15 | 1963 | 5.94 | 0.06 |  | 0.08 |  | 0.02 |  | 6.10 | 0.0073 |
| 16 | 1962 | 2.05 | 0. 29 |  | 0.05 | 0.03 | 0.21 |  | 2.63 | 0.0032 |
| 17 | 1961 | 5.24 | 0.06 |  | 0.14 | 0.02 | 0.11 |  | 5.57 | 0.0067 |
| Age <br> unk |  | 0.19 |  |  |  |  |  |  | 0.19 | 0.0002 |
|  | ges ${ }^{\text {a }}$ | 633.64 | 84.91 |  | 16.66 | 10.60 | 85.74 |  | 831.56 | 1.0000 |

[^16]

Figure 19. --Length and age composition of rock sole (sexes combined) from the overall 1978 survey area.

FLATHEAD SOLE


Figure 20.--Distribution and relative abundance of flathead sole during the 1978 demersal trawl survey.

Table 26 .--Apparent abundance and mean sizes of flathead sole by subarea and for all subareas combined, 1978 trawl survey.

a CPUE = catch per unit of effort.
b 95\% confidence interval $=67,448-103,722$.
$C$ Minor differences between sums of figures by subarea and totals are due to rounding.

## FLATHEAD SOLE



## FLATHEAD SOLE

Table 27 .--Estimated population size of flathead sole age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

| Age | Year- <br> class | Subareas |  |  |  |  |  |  | ```All}\mp@subsup{}{}{a subareas combined``` | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | $2=$ | 3N | 3S | 4N | 4 S | 5 |  |  |
| 1 | 1977 |  | 4.05 | 0.09 | 6.54 |  | 0.82 |  | 11.49 | 0.0292 |
| 2 | 1976 |  | 3.06 | 1.89 | 1.71 | 0.03 | 0.34 |  | 7.04 | 0.0179 |
| 3 | 1975 | 2.86 | 25.47 | 15.55 | 14.46 | 0.51 | 1.79 |  | 60.64 | 0.1542 |
| 4 | 1974 | 9.09 | 20.32 | 7.75 | 7.93 | 0.78 | 0.92 |  | 46.78 | 0.1190 |
| 5 | 1973 | 10.70 | 18.81 | 6.33 | 5.35 | 0.94 | 0.67 |  | 42.80 | 0.1088 |
| 6 | 1972 | 4.82 | 8.42 | 2.31 | 1.93 | 0.32 | 0.24 |  | 18.04 | 0.0459 |
| 7 | 1971 | 3.68 | 12.46 | 1.25 | 2.21 | 0.15 | 0.26 |  | 20.01 | 0.0509 |
| 8 | 1970 | 6.48 | 21.82 | 2.05 | 4.00 | 0.38 | 0.81 |  | 35.53 | 0.0904 |
| 9 | 1969 | 9.18 | 28.99 | 2.83 | 4.97 | 0.56 | 1.30 |  | 47.83 | 0.1216 |
| 10 | 1968 | 7.89 | 25.19 | 2.00 | 4.16 | 0.43 | 1.17 |  | 40.85 | 0.1039 |
| 11 | 1967 | 3.18 | 13.25 | 0.37 | 1.83 | 0.10 | 1.09 |  | 19.83 | 0.0504 |
| 12 | 1966 | 2.04 | 8.83 | 0.30 | 1.31 | 0.02 | 0.54 |  | $\therefore \quad 13.04$ | 0.0332 |
| 13 | 1965 | 1.38 | 4.93 | 0.06 | 0.53 |  | 0.88 |  | . 7.77 | 0.0198 |
| 14 | 1964 | 0.93 | 3.09 | 0.03 | 0.32 |  | 0.58 |  | $\because 4.96$ | 0.0126 |
| 15 | 1963 | 0.91 | 3.51 | 0.05 | 0.46 |  | 0.60 |  | 5.54 | 0.0141 |
| 16 | 1962 | 0.74 | 1.91 | 0.02 | 0.21 |  | 1.12 |  | 4.00 | 0.0102 |
| 17 | 1961 | 0.52 | 1.65 | 0.01 | 0.19 |  | 0.66 |  | 3.03 | 0.0077 |
| 18 | 1960 | 0.60 | 0.37 |  | 0.06 |  | 0.67 |  | 1.70 | 0.0043 |
| 19 | 1959 | 0.09 | 0.18 | 0.01 | 0.01 |  | 0.30 |  | 0.59 | 0.0015 |
| 20 | 1958 | 0.09 | 0.13 |  | 0.01 |  | 0.87 |  | 1.10 | 0.0028 |
| 22 | 1956 | 0.23 | 0.08 |  | 0.02 |  | 0.23 |  | 0.57 | 0.0015 |
| Ages unkn |  |  |  |  |  |  | 0.06 |  | 0.06 | 0.0002 |
| All ages ${ }^{\text {a }}$ |  | 65.42 | 206.53 | 42.92 | 58.21 | 4.20 | 15.92 |  | $393.19^{\text {b }}$ | 1.0000 |

${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.
${ }^{\text {b }}$ Population estimates derived from ageing studies differed from those derived from biomass studies because occasionally weights and numbers were collected for this species, but no length-frequencies were taken.

FLATHEAD SOLE



[^17]

Table $28 .--A p p a r e n t ~ a b u n d a n c e ~ a n d ~ m e a n ~ s i z e s ~ o f ~ A l a s k a ~ p l a i c e ~ b y ~ s u b a r e a ~$ and for all subareas combined, 1978 trawl survey.


[^18]
## ALASKA PLAICE



Inner shelf subareas
5

$3 S$


2
mean lemgth = 34.7




1


Figure 24.--Size composition of Alaska plaice (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## ALASKA PLAICE

Table 29.--Estimated population size of Alaska plaice age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.
${ }^{b}$ Population estimates derived from ageing studies differed from those derived from biomass studies because occasionally weights and numbers were collected for this species, but no length-frequencies were taken.


Figure 25. --Length and age composition of Alaska plaice (sexes combined) from the overall 1978 survey area.


Figure 26.--Distribution and relative abundance of Greenland turbot during the 1978 demersal trawl survey.

Table 30.--Apparent abundance and mean sizes of Greenland turbot by subarea and for all subareas combined, 1978 trawl survey.

| $\begin{aligned} & \text { Sub- } \\ & \text { area } \end{aligned}$ | $\begin{aligned} & \text { Mean } \\ & \text { CPUE } \\ & (\mathrm{kg} / \mathrm{ha}) \end{aligned}$ | Estimated hiomass (t) | Proportion of total estimated bionass | Estimated population (millions) | Proportion of total estimated population | Mean size per individual |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Weight $(\mathrm{kg})$ | Length (cm) |
| 1 | 0.39 | 3,262 | 0.030 | 17.7 | . 0.022 | 0.184 | No) L//F' |
| 2 | 1.29 | 7,856 | 0.073 | 17.6 | 0.022 | 0.417 | 31.1 |
| 3N | 6.92 | 17,336 | 0.160 | 96.9 | 0.123 | 0.179 | 25.6 |
| 35 | 6.20 | 49,123 | 0.454 | 302.5 | 0.383 | 0.162 | 25.3 |
| 4 N | 4.11 | 9,194 | 0.085 | 93.7 | 0.119 | 0.098 | 21.3 |
| 4 S | 2.58 | 12,750 | 0.118 | 155.3 | 0.197 | 0.089 | 18.4 |
| 5 | 3.92 | 8,608 | 0.080 | 105.4 | 0.134 | 0.082 | 19.5 |
| All sub-c areas combined | 3.16 | 108,129 ${ }^{\text {b }}$ |  | 789.0 |  | 0.137 | 23.0 |

[^19]
## GREENLAND TURBOT










Figure 27. --Size composition of Greenland turbot (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## GREENLAND TURBOT

Table 31 .--Estimated population size of Greenland turbot age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).

| Age | Year- <br> class | Subareas |  |  |  |  |  |  | Alla subareas combined | Proportion of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3N | 3 S | 4N | 4S | 5 |  |  |
| 0 | 1978 |  |  |  | 0.14 | 0.26 |  | 0.32 | 0.73 | 0.0009 |
| 1 | 1977 |  | 0.27 | 31.58 | 103.00 | 49.61 | 120.51 | 65.72 | 370.69 | 0.4806 |
| 2 | 1976 |  | 7.47 | 48.48 | 145.49 | 35.66 | 28.83 | 31.45 | 297.37 | 0.3855 |
| 3 | 1975 |  | 4.43 | 11.99 | 45.23 | 7.78 | 4.89 | 7.62 | 81.94 | 0.1062 |
| 4 | 1974 |  | 2.22 | 2.63 | 5.49 | 0.34 | 0.82 | 0.23 | 11.73 | $\cdots 0.0152$ |
| 5 | 1973 |  | 2.06 | 1.87 | 2.88 | 0.03 | 0.18 | 0.01 | 7.04 | $\therefore 0.0091$ |
| 6 | 1972 |  | 0.35 | 0.27 | 0.16 |  | 0.03 |  | 0.81 | 0.0011 |
| 7 | 1971 |  | 0.03 |  |  |  |  |  | 0.03 | $<0.0001$ |
| 8 | 1970 |  | 0.22 | 0.05 |  |  |  |  | 0.27 | 0.0003 |
| 9 | 1969 |  | 0.02 |  |  |  |  |  | 0.02 | $<0.0001$ |
| 10 | 1968 |  | 0.04 | 0.02 |  |  |  |  | 0.06 | 0.0001 |
| 11 | 1967 |  | 0.0 .3 |  |  |  |  |  | 0.03 | $<0.0001$ |
| 13 | 1965 |  | 0.15 |  | 0.04 |  |  |  | 0.19 | 0.0002 |
| 14 | 1964 |  | 0.03 |  | 0.02 |  |  |  | 0.05 | 0.0001 |
| 15 | 1963 |  | 0.06 | 0.03 | 0.04 |  |  |  | 0.14 | 0.0002 |
| 16 | 1962 |  | 0.02 |  |  |  |  |  | 0.02 | <0.0001 |
| 17 | 1961 |  | 0.03 |  | 0.02 |  |  |  | 0.05 | 0.0001 |
| 18 | 1960 |  | 0.13 |  |  |  |  |  | 0.13 | 0.0002 |
| All ages ${ }^{\text {a }}$ combined |  |  |  | - |  |  |  | $\because \because$ |  | " |
|  |  |  | 17.56 | 96.92 | 302.51 | 93.68 | 155.26 | 105.35 | $771 \cdot 30^{\text {b }}$ | 1.0000 |

${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.
${ }^{b}$ Population estimates derived from ageing studies differed from those derived from biomass studies because occasionally weights and numbers were collected for this species, but no length-frequencies were taken.

## GREENLAND TURBOT



[^20]

Figure 29. --Distribution and relative abundance of arrowtooth flounder during the 1978 demersal trawl survey.

Table 32 .--Apparent abundance and mean sizes of arrowtooth flounder by subarea and for all subareas combined, 1978 trawl survey.

a CPUE $=$ catch per unit of effort.
b 95\% confidence interval $=31,305-59,152$.
C Minor differences between sums of figures by subarea and totals are due to rounding.

## ARROWTOOTH FLOUNDER



## ARROWTOOTH FLOUNDER

Table 33 .--Estimated population size of arrowtooth flounder age groups by subarea and for all subareas combined, 1978 demersal trawl survey (millions of fish).


[^21]
## ARROWTOOTH FLOUNDER




Figure 32. --Distribution and relative abundance of Pacific halibut during the 1978 demersal trawl survey.

Table 34 .--Apparent abundance and mean sizes of Pacific halibut by subarea and for all subareas combined, 1978 trawl survey.

a CPUE $=$ catch per unit of effort.
b $95 \%$ confidence interval $=12,659-22,906$.
$c$ Minor differences between sums of figures by subarea and totals are due to rounding.

## PACIFIC HALIBUT

## Outer shelf subareas

3N

$3 S$


2
hean length = 49.7


All subareas combined


Inner shelf subareas
5

$4 N$


4S



Figure 33. --Size composition of Pacific halibut (sexes combined) from the 1978 survey by subarea and for all subareas combined.

## REFERENCES

ALVERSON, D.L., and W.T. PEREYRA.
1969. Demersal fish explorations in the northeastern Pacific Ocean--an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.

COACHMAN, L. K., and R. L. CHARNELL.
1979. On lateral water mass interaction--a case study, Bristol Bay, Alaska; J. Phys. Oceanogr. 9:278-297.

GEISSER, S., and WILLIAM F. EDDY.
1979. A predictive approach to model selection. J.Am. Stat. Assoc. 74(365):153-160.

INGRAHAM, w. J., Jr.
1981. Shelf Environment. In D. W. Hood and J.A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, volume 1, p. 455469. U.S. Gov. Print. Off., Washington, D.C.

MacDONALD, P. D. M., and T. J. PITCHER.
1979. Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36:987-1001.

OTTO, R., FUKUYAMA, T. ARMETTA, and R. MacINTOSH.

1979a. Report to industry on 1978 eastern Bering Sea survey; Tanner crab. Processed Rep., 32 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, Kodiak Fac., Kodiak, Alaska.

OTTO, R., R. MacINTOSH, T. ARMETTA, AND A. FUKUYAMA.

1979b. Report to industry on 1978 eastern Bering Sea survey; king crab. Processed Rep. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, Kodiak Fac., Kodiak, Alaska.

PEREYRA, W. T., J. E. REEVES, and R. G. BAKKALA.
1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish; Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

QUAST, J. C., and E. L. HALL.

1972: List of fishes of Alaska and adjacent waters with a guide to some of their literature. U. S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF658, 47 p.

ROBINS, C. R. (chairman).
1980. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Publ. 12, 174 p.

SMITH, G. B., and R. BAKKALA.
1982. Demersal fish resources of the eastern Bering Sea: spring 1976. U. S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.

## LIST OF APPENDICES

Appendix Page
A. Station and Catch Data, 1978 Eastern Bering Sea Demersal Trawl Survey ..... 68
B. Rank Order of Relative Abundance for Fish and Invertebrates ..... 100
C. Population and Biomass Estimates for Principal Species of Fish ..... 109
D. Estimates of Population Number by Sex and Size Group for Principal Species of Fish ..... 120
E. Age Composition Estimates for Principal Species of Fish ..... 137
F. Age-Length Keys for Principal Species of Fish ..... 147

APPENDIX A<br>Station and Catch Data<br>1978 Eastern Bering Sea Demersal Trawl Survey

Appendix A lists station and catch data for all hauls attempted during the 1978 survey. The data are organized into three tables: successful hauls used in the analysis as standard survey tows (Table A-l), comparative side-byside tows used to determine relative fishing powers between vessels (Table A-2), and unsuccessful tows (Table A-3). Latitudes and longitudes are in degrees, minutes, and tenths of minutes. Gear depths are in fathoms. Duration of tow is in tenths of hours. Distance fished is in tenths of nautical miles. A performance code of 0 indicates a satisfactory tow and codes 5-7 unsatisfactory tows. Gear 20 represents the 400 Eastern trawl. Catch weights are in kilograms.

LIST OF TABLES

Table
Page
A-l. Station and catch data for successfully completed hauls.
a. R/V Oregon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
b. $\mathrm{F} / \mathrm{V}$ Paragon II ......................................................... . . . 77

A-2. Station and catch data from comparative fishing experiments successfully completed.
a. R/V Oregon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
b. $F / V$ Paragon $I I$. . . . . . . . . . . . . . . . . . . . . . . ............................. 95

A-3. Station and catch data for unsuccessful hauls.
a. R/V Oregon .............................................................. . . 98
b. $\mathrm{F} / \mathrm{V}$ Paragon II ......................................................... 99

Table A-la.--Station and catch data for hauls successfully completed-oregon.

| MONTH/DAY/YEAR | $5120 / 18^{1}$ | $5 / 20 / 70^{2}$ | $5120178^{3}$ | 5/20/78 | 5/22/70 | $512218^{6}$ | 5/22178 | 5122178 | $5123 / 78$ | $5 / 23 / 170$ | $5 / 23 / 18$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LATITUDE START | 54 40.0 | 5459.0 | 5520.0 | 5539.0 | 5559.0 | 5619.0 | 5639.0 | 5659.0 | 5659.0 | 5640.5 |  |
| LONGITUDE START | 165 e.9 | 1658.9 | 1658.9 | 1658.9 | 1659.9 | 16512.0 | 16513.0 | 15512.0 | $\begin{array}{rr} 56 \\ 164 & 36.0 \end{array}$ | 164 35.0 | 16435.0 |
| LATITUDE END | 54.11 .0 | 550.9 | 5521.1 | 55.51 .0 | 560.7 | 56 20.4 | 56 40.6 | 57 0.t | 570.7 | 56 38.9 | 56 1E.9 |
| LONGITUDE END | 16510.3 | 15510.1 | 16510.3 | 16511.1 | 16511.5 | 16512.1 | 16513.6 | 16512.9 | 16436.1 | 16635.9 | 5613509 1645.5 |
| LDRAN START | 34607.90 | 34566.30 | 34517.00 | 34461.90 | 34399.10 | 34326.00 | 34238.80 | 34132.30 | 34022.50 | 16422.20 |  |
| LORAN SIART | 48028.50 | 48056.10 | 48084.00 | 48120.00 | 48133.70 | 48154.30 | $48166.30^{\circ}$ |  |  |  | 34214.00 4912.20 |
| LORAN END | 34608. 50 | 34566.20 | 34516.60 | 34461.70 | 34396.80 | 4159.50 34321.30 | 48166.30 34234.20 | 48160.20 34125.40 | 47915.40 34015.10 | 47916.00 3428.40 | $\begin{aligned} & 47912.20 \\ & 34219.50 \end{aligned}$ |
| LORAN END | 48036.00 | 48063.30 | 4e091.00 | 48118.90 | 46139.00 | 48155.20 | 48170.20 | 46125.40 48161.50 | 34015.10 47915.20 | 34128.40 47916.80 | 34219.50 <br> 47912.50 |
| gear oepth <br> DURATION IM HOURS | 44 | 58 | 58 | 57 | 51 | 46 | 40 | 37 | -31 | 478.0 | + 46 |
| DISTANCE FISHED | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50. |
| PERFORMANCE ! GEAA | 1.10 $0 / 20$ | 1.20 | 1.10 | 1.30 | 1.20 | 1.20 | 1.30 | 1.40 | 1.40 | 1.20 | 1.20 |
| Peafonmance \% Gear | $0 / 20$ | $0 / 20$ | 0120 | $0 / 20$ | $0 / 20$ | - 120 | 0120 | $0 / 20$ | -120 | $0 / 20$ | 0120 |
| POLlack | 127.7 | 526. 6 | 346.1 | 116.3 | 32.2 | 45.4 | 44.5 |  |  |  | 36. 3 |
| Pac cod | 5.4 | 100.9 | 12.0 | 11.5 | 70.5 | 19.3 | 98.9 | 30.5 | 81.9 | 53.1 | 36.3 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | $0 \cdot 0$ | 19.3 | 92.9 |  | 78.9 | 10.9 | 37.6 |
| DTHER RCKFISH | 0.0 | 0.0 | 0.0 | - 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| SABLEFISH | 0.0 | 0.0 | 1.0 | O. 0 | Cos | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| atka mackerel | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
| SCULPIMS | 138.6 | 11.7 | 7.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $0 \cdot 0$ |
| EELPOUTS | 0.0 | 12.7 | 8.6 | 6.9 | 4.3 | 7.5 | 7.0 | 40.3 | 42.5 | 12.3 | 27.9 |
| OTHER RNDFISH | 23.0 | 2.6 | 20.6 | 21.1 | 14.3 | 4.0 | 6.6 | 26.3 | 16.4 | 2.7 | 1.6 |
| TOT ROUNDFISH | 294.7 | 2.5 644.4 | 0.2 | 0.1 | 1.0 | 0.3 | 0.1 | 0.4 | 0.3 | 0.2 | 0.1 |
|  | 294.7 | 644.4 | 307.9 | 153.9 | 122.5 | 76.3 | 157.0 | 105.6 | 220.1 | 79.2 | 103.5 |
| YELLOn SOLE | 110.8 | 0.5 | 0.0 | 0.1 | 19.3 | 12.1 | 15t.1 | 210.2 | 330.9 | 96.6 | 34.0 |
| ROCK SOLE | 38.7 | 13.2 | 0.0 | 0.0 | 22.2 | 1.8 | 15.2 |  |  |  | 34.0 |
| FLATHEAD SOLE | 7.5 | 6.4 | 35.2 | 42.6 | 6.8 | 13.6 | 3.8 2.7 | 3.6 6.4 | 1.6 | $\times 2.3$ | 3.9 |
| ALA 5KA Plaice | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 | 13.6 |  | 16.4 | 1.0 | 2.9 | $2 \cdot 9$ |
| GREENLAND TBI | 0.0 | 0.0 | 0.7 | 3.9 | 5.6 | 3.6 | 5.4 2.3 | 14.7 | 39.0 | 3.2 | ¢. 9 |
| ARROMIOOTH FL | 88.4 | 25.9 | 12.7 | 23.6 | 5.6 6.6 | \%.0 | 2.3 | 14.1 | 13.6 | 5.9 | 4.3 |
| Pac halibut | 9.1 - | 14.1 | 7.7 | 13.2 | 17.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| OTHER FLTfISH | 6.2 | 1.8 | 0.5 | 13.8 0.0 | 17.7 | 0.9 | 0.0 | 2.3 | 2.3 | 4.5 | 6.4 |
| TOT FLATFISH | 260.5 | 61.7 | 56.7 | 83.3 | 88.1 | 0.0 39.2 | 171.7 | 0.0 251.3 | 495.0 | 0.0 | 0.0 |
| SKATES | E. 1 | 9.1 | 11.8 | 22.5 | C. 9 |  |  |  |  |  |  |
| TOT ELASMQ日RA | 8.1 | 9.1 | 11.8 | 22.5 | 0.9 | 1.6 6 | 3.4 | 0.0 0.0 | 0.5 0.5 | 0.0 0.0 | 0.0 0.0 |
| FED KING CRAB | 120.7 | 0.0 | 20.9 | 20.0 |  |  |  |  |  |  |  |
| BLUE KING CRA | 0.0 | 0.0 | 0.0 | 20.0 0.0 | 0.0 | 383.3 0.0 | 295.1 0.0 | 0.0 | 3.9 | 11.3 | 106.6 |
| IANMER, BAIRDI | 21.5 | 1.6 | 2.5 | 13.6 | 3.6 | 6.4 | 6.8 | 0.0 | 0.0 | 10.0 12.2 | 0.0 31.5 |
| TANNER. OPILID | 0.2 | 8.2 | 5.0 | 8.8 | 10.6 | 22.9 | 6.8 17.7 | 0.0 27.1 | 5.4 | 12.2 | 31.5 |
| TANAER, HYBRID | 0.0 | n. 0 | 0.0 | 0.0 | 10.6 | 22.9 | 17.8 | 27.1 | 23.1 | 18.0 | 27.2 |
| OTHER CRAB | 3.6 | 3.1 | T. 3 | 1.6 | 51.3 | 59.9 | 0.0 | 0.0 | 0.2 | 0.0 | $0 \cdot 5$ |
| SNAILS | 0.1 | 1.8 | 0.3 | 0.2 | 512.6 | 45.8 | 0.6 33.9 | 21.5 | 36.3 | 11.8 | 28.1 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | - 0.1 | 3.0 | 58.8 | 33.6 | 54.3 | 4 E .8 |
| STAGFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 23.8 | 100 | 0.1 | 0.0 | 0.0 | 0.0 |
| SQuID | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 23.8 | 100.0 | 104.0 | 46.9 | 58.5 | 21.8 |
| OCITOP US | 0.0 | 0.0 | 0.0 | -0 | 0.0 | 0.0 | D. 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DTHER INVERTS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.9 |
| TOTAL INVERTS | 146.1 | 14.7 | 15.9 | 44.3 | 107.1 | 2.2 525.1 | 5.4 459.3 | 2.7 222.0 | 1.5 250.9 | $\begin{array}{r} 0.8 \\ 84.2 \end{array}$ | $\begin{array}{r} 4-6 \\ 270.0 \end{array}$ |
| OTHER | 0.0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CaICh | 709.4 | 729.8 | 492.3 | 304.0 | 318.8 | 642.9 | 791.4 | 579.0 | 766.7 | 341.9 | 428.1 |

Table A-la.--Continued.

| HAUL | 12 | 13 | 14 | 15 | 16 | 17. | 18 | 19 | 20 | 21 | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONIH/DAY/YEAR | 5/23178 | 5124/1.8 | 5/24/78 | 5124178 | 5124178 | $5 / 25178$ | 5/25178 | 5125178 | $5 / 25178$ | 5/26178 | 5126170 |
| LAIIIUOE STAKT | 560.0 | 55 59.0 | 5619.0 | 5639.0 | 5659.0 | 57 20.0 | 5719.0 | 5720.0 | 5720.0 | 5720.0 | 5719.0 |
| LONGITUDE START | 16435.0 | 16359.0 | 16359.0 | 1640.0 | 1640.0 | 1640.0 | 16323.0 | 16245.9 | 1628.9 | 16131.9 | 16056.0 |
| LAIITUDE END | 5559.5 | 55 58.8 | 5620.3 | 5642.0 | 57 C. 5 | 57 20.3 | 5) 19.6 | 5720.0 | 5718.8 | 5189.8 | 5719.3 |
| LONGITUDE END | 16435.4 | 16359.5 | 16359.8 | 1640.5 | 1640.9 | 16356.6 | 16320.9 | 162 44.6 | 1628.9 | 16130.3 | 16054.2 |
| LORAN START | 34293.10 | 14195.60 | 34116.20 | 34019.20 | 33918.80 | 33796.80 | 33695.30 | 33592.60 | 33497.30 | 33404.90 | 33316.90 |
| LORAN START | 47902.40 | 47671.10 | 47676.70 | 47679.00 | 47676.20 | $47667.40^{\circ}$ | 47425.90 | 47172.60 | 46923.70 | +6673.20 | 46431.90 |
| LORAN END | 34297.40 | 34199.50 | 34110.80 | 34015.00 | 33912.80 | 33790.20 | 33689.10 | 33589.00 | 33505.70 | 33401.50 | 33318.10 |
| LORAN END | 47903.20 | 47669.40 | 47676.30 | 47681.30 | 47678.80 | 47652.70 | 47400.70 | 47158.20 | 46919.90 | 46660.50 | 46419.20 |
| GEAR CEPTH | 4 | 4766.49 | +1676.30 | +690.39 | +7670. 35 | 47652.75 33 | +7400.70 | +250.20 26 | 46919.90 26 | 46660.50 30 | +6419.20 |
| OURATION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.00 | 1.20 | 1.20 | 1.10 | 1.20 | 1.20 | 1.20 | 1.30 | 1.40 | 1.10 | 0.50 1.20 |
| Performance / Gear | 0120 | 0120 | 0120 | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 \% 20$ | 0120 | 0120 | 0120 | $0 / 20$ |
| POLLOCK | 16.6 | 15.2 | 99.6 | 45.6 | 7.7 | 2.1 | 1.5 | 0.5 | 3.9 | 1.6 | 1.8 |
| PAC COD | 14.5 | 44.7 | 27.7 | 2.7 | 15.4 | 8.6 | 7.7 | 65.4 | 21.8 | 32.9 | 46.3 |
| PAC DC PEACH. | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HERFING | 0.0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ATKA MACKEREL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 10.4 | 1.4 | 7.4 | 6.1 | 18.3 | 25.7 | 19.1 | 22.4 | 26.0 | 26.4 | 11.6 |
| EELPOUIS | 12.9 | 5.9 | 12.2 | 2.3 | 1.8 | 3.4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RNCFISH | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 1.3 | 4.1 | 2.1 | 2.6 | 1.7 | 0.5 |
| TOT foUNDFISH | 54.7 | 67. 5 | 147.2 | 57.0 | 43.6 | 41.7 | 33.4 | 70.4 | 54.2 | 62.5 | 60.2 |
| YELLOH SOLE | 72.6 | 24.0 | 42.6 | 219.1 | 167.4 | 167.8 | 478.1 | 308.0 | 480.1 | 345.2 | 193.0 |
| ROCK SOLE | 25.6 | 20.0 | 5.4 | 2.0 | 1.8 | 4.5 | 55.3 | 129.7 | 44.7 | 14.3 | 27.20 |
| FLATHEAD SOLE | 5.0 | 6.4 | 5.0 | 1.8 | 0.1 | 0.1 | 1.1 | 0.7 | 1.7 | 0.4 | 2. 2 |
| ALASKA PLAICE | 20.6 | 2.0 | 10.0 | 10.0 | 67.4 | 98.9 | 230.3 | 103.4 | 100.7 | 29.0 | 18. 6 |
| GREENLAND IET | 1.4 | 0.9 | 2.7 | 5.4 | 8.6 | 9.5 | 1.0 | . 0.5 | 0.7 | 0.1 | 0.1 |
| ARROMTOOTH FL | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HALIBUT | 5.9 | 5.0 | 0.0 | 3.6 | 5.4 | 0.9 | 6.7 | 2.2 | 11.0 | 1.0 | 1.1 |
| OJHER FLIFISH TOT FLatfish | 0.1 132.6 | 0.0 58.7 | 0.0 65.8 | 0.0 241.9 | 250.7 | 28108 | 54.2 828.8 | 24.0 568.5 | 48.5 687.4 | 29.3 | 4.5 |
| SKATES | 3.6 | 7.7 | 0.5 | 0.0 | 0.5 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT ELASMOBRH | 3.6 | 7.7 | 0.5 | 0.0 | 0.5 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| RED KING CRAJ | 2.9 | 5.4 | 58.7 | 399.8 | 151.5 | 14.5 | 16.3 | 45.4 | 48.5 | 123.4 | 170.6 |
| BLUE KING CRAB IANNER. BAIRDI | 0.0 13400 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| IANNER, BAIRDI TANNER, OPILIO | 134.0 5.0 | 67.1 96.6 | 27.0 | 16.8 | 13.2 | 78.0 | 54.0 | 23.8 | 28.6 | 14.5 | 6.4 |
| TANNER, HYGRIC | 0.2 | 96.6 0.0 | 12.9 | 42.2 | 10.0 | 134.0 | 134.3 | 28.1 | 25.9 | 7.3 | 0.9 |
| OTHER CRAB | 1. 6 | 23.0 | 6.7 | 33.1 | 22.0 | 112.1 | 0.9 79.3 | 0.0 | 0.0 | 0.7 | 0.0 |
| SNaILS | 19.9 | 21.7 | 19.3 | 16.6 | 10.8 | 44.2 | 59.2 | 27.9 | 1.6 | 20.3 | 16.4 1.4 |
| SHRIMP | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 |
| STARFISH | 0.2 | 0. 0 | 0.0 | 35.2 | 22.0 | 17.2 | 111.2 | 14.5 | 0.9 | 5.9 | 1.8 |
| SOUID | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OCIOPUS | 0.0 | 0.9 | 0.0 | 2.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| OTHER INYERTS | 0.8 | 0.5 | 0.5 | 0.5 | 3.9 | 1.3 | 17.0 | 1. 6 | 7.0 | 14.4 | 23E.9 |
| TOTAL INVERTS | 166.e | 214.4 | 125.4 | 546.9 | 233.4 | 409.0 | 672.2 | 145.9 | 114.6 | 194.8 | 434.4 |
| DTHER | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 156.t | 348. 3 | 338.8 | 845.8 | 520.2 | 734.0 | 1534.5 | 784.7 | 856.2 | 649.6 | 741.4 |

Table A-1a.--Continued.

| hall | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/DAY/YEAR | 5126178 | 5/26/18 | 5/21/170 | 5/27/78 | 5/27/78 | 5/27/78 | 5/28/78 | 5/28/78 | 5/28/78 | 5128/78 | 5/29/78 |
| Latitude Starl | 5719.0 | 57 20.0) | 5721.0 | 5659.0 | 5648.0 | 5639.0 | 5659.0 | 5659.0 | 5659.0 | 5659.0 | 5659.0 |
| LONGITUDE START | 16017.9 | 15938.9 | 1592.9 | 15980 | 15988.9 | 15944.0 | $1594 \% 0$ | 16020.0 | 16056.0 | $16: 32.9$ | 1628.9 |
| LATITUDE END | 5715.8 | 57 20.7 | 5725.5 | 5658.3 | $564 \mathrm{P.4}$ | 56 3P.9. | 5659.9 | 5659.8 | 5659.7 | 56.59 .9 | 5659.4 |
| LONGITUDE END | 16015.5 | 15937.8 | 1594.5 | 15980 | 15910.4 | 15943.6 | 15943.4 | 16022.6 | 16057.7 | 16135.6 | 16212.1 |
| LORAN STARI | 33232.50 | 33142.50 | 33063.10 | 33187.20 | 33244.20 | 33366.60 | 33258.50 | 33345.40 | 33431.10 | 33522.30 | 33614.80 |
| LORAN START | 46178.20 | 45922.30 | 45680.60 | 45716.70 | 45730.00 | 45969.70 | 45938.20 | 46198.60 | 46436.60 | 46691.50 | 46932.40 |
| LORAN END | 33226.60 | 33137.90 | 33040.80 | 33192.70 | 33247.60 | 33367.60 | 35262.00 | 33351.60 | 33434.60 | 33526.00 | 39621.70 |
| LORAN END | 46160.60 | 45908.20 | 45684.50 | 45714.90 | 45736.30 | 45962.20 | 45951.60 | 46214.70 | 46450.20 | 46703.80 | 46949.00 |
| GEAR DEPTH | 32 | 29 | 25 | 15 | 10 | 14 | 29 | 34 | 34. | 36 | 32 |
| DURATION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.40 | 1.10 | 1.10 | 1.20 | 1.10 | 1.000 | 1.10 | 1. 30 | 1.00. | 1.00 | 1.40 |
| PERformance / GEar | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | 0 / 20 | 0/20 | $0 / 20$ | $0 / 20$ | 0120 |
| POLlDCK | 0.1 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 2.7 | 5.0 |
| PAC COD | 15.4 | 43.e | 2.3 | 69.6 | 3.2 | 232.2 | 19.1 | 9.1 | 12.7 | 16.1 | 31.5 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| AIka Mackerel | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| SCULPINS | 10.0 | 21.7 | 75.4 | 55.9 | 18.4 | 24.6 | 21.1 | 2.9 | 12.7 | 14.9 | 15.1 |
| EELPOUTS | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 |
| DTHER RNDFISH | 3.8 | 8.6 | 5.2 | 6.8 | S. 1 | 4.2 | 19.6 | 1.2 | 0.9 | 0.8 | 0.6 |
| TOT ROUNDFISH | 29.4 | 76.8 | 02.9 | 132.3 | 26.6 | 261.1 | 59.8 | 13.3 | 26.4 | 34.6 | 52.7 |
| YELLOH SOLE | 282.1 | 134.7 | 1651.3 | 495.2 | 167.8 | 112.0 | 78.0 | 90.4 | 79.6 | 117.0 | 208.2 |
| ROCK SOLE | 113.2 | 71.7 | 81.4 | 51.0 | 7.7 | 90.5 | 61.7 | 71.4 | 14.5 | 18.1 | 38.6 |
| flathead sole | 2.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.5 | 1.8 | 2.7 | 3.6 |
| alaska platce | 22.7 | 0.0 | 0.5 | 0.0 | 0.4 | 0.0 | 0.0 | 2.3 | 13.2 | 32.2 | 5.9 |
| GREENLAND TBT | 0.5 | 0.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.9 |
| ARROKTOOTH FL | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | C. 0 |
| PAC HALIBUT | 0.8 | 0.4 | 12.7 | 0.0 | 2.5 | 0.6 | 3.3 | 0.0 | 10.0 | 2.7 | 2.4 |
| OTHER FLJFISH | 16.8 | 9.3 | 0.7 | 15.3 | $\underline{2} 6$ | 16.3 | 2.3 | 5.7 | 3.4 | 1.1 | 13.5 |
| IOT FLATFISH | 438.3 | 216.3 | 1746.6 | 562.0 | 202.0 | 219.6 | 147.6 | 170.2 | 122.5 | 176.0 | 273.1 |
| SKATES | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 |
| TOT ELASMOBRH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | C. 0 |
| RED KING CTAB | 46.3 | 38.6 | 6.8 | 44.9 | 1.4 | 22.5 | 61.7 | 33.6 | 133.4 | 183.3 | 153.8 |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER. BAIRDI | 27.2 | 23.1 | 1.8 | 1.4 | 0.0 | 0.7 | 39.0 | 54.0 | 23.6 | 11.3 | 13.6 |
| TANNER, DPILI O | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 | 1.4 |
| TANNER. HYBRID | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
| OTHER CRAB | 15.1 | 7.1 | 5.0 | 26.2 | 2.5 | 4.2 | 5.4 | 5.7 | 1.9 | 2.5 | 4.3 |
| SNAILS | 0.4 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.1 | 0.0 |
| SHRIMP | 0.3 | 0.1 | 0.0 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 |
| STARFISH | 7.3 | 75.1 | 500.6 | 496.0 | 36.1 | 33 E .2 | . 356.3 | 71.9 | 10.7 | 3.4 | 0.0 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC TOPUS | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INYERIS | 96.5 | 14.7 | 4.5 | 36.7 | 23.3 | 0.4 | 121.1 | 236.9 | 104.2 | 115.2 | 3.7 |
| TOTAL INVERTS | 193.5 | 158.8 | 518.9 | 605.5 | 63.3 | 365.9 | 583.5 | 405.8 | 274.3 | 315.8 | 176.9 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 661.1 | 451.9 | 2348.4 | 1299.7 | 291.9 | 846.5 | 790.9 | 589.3 | 423.1 | 527.5 | 502.7 |

Table A-la.--Continued

| HAUL | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 43 | 44 | 45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/DAY/YFAR | 5129178 | 5/2917 | 5/29/78 | 5/30/76 | 5/30/78 | 5/30/78 | $5 / 30 / 78$ | 5/31878 | 6/1/78 | $6 / 1 / 78$ | 611178 |
| LAIIIUDE START | 5659.0 | 5659.0 | 5639.0 | 5639.0 | 5641.0 | 5640.0 | 5640.0 | 56 39.0 | 565.0 | 5619.0 | 5620.0 |
| LONGITUDE STARI | 16245.9 | 16322.0 | 16322.0 | 16246.9 | 16211.0 | 16135.0 | 16059.0 | 16022.0 | 16059.0 | 16059.0 | 16137.0 |
| LATITUDE END | 5659.5 | 5658.4 | 5638.4 | 5639.6 | 5641.0 | 5639.4 | 5640.7 | 56 38.8 | 56 6.8 | 5619.9 | 5619.9 |
| LONGITUDE ENO | 16249.2 | 16322.3 | 16321.0 | 16245.1 | 16210.1 | 16135.6 | 16056.8 | 16021.6 | 16059.5 | 161 1.8 | 16140.3 |
| LORAN START | 33711.60 | 33808.90 | 33916.50 | 33816.70 | 33714.00 | 33628.00 | 33535.60 | 33451.90 | 33701.20. | 33635.50 | 33729.50 |
| LORAN START | 47179.90 | 47420.50 | 47420.10 | 47189.80 | 46952.00 | 46708.60 | 46467.30 | 46219.10 | 46485.00 | 46476.20 | 46729.60 |
| LORAN END | 33719.00 | 33615.20 | 33916.00 | 33812.60 | 33712.90 | 33632.50 | 53530.40 | $\underline{3455.80}$ | 33694.50 | 33641.50 | 33731.40 |
| LORAN END | 47198.30 | 45420.50 | 47416.70 | 47177.10 | 46941.60 | 46711.20 | 46451.40 | 46216.90 | 46482.30 | 46492.70 | 46748.80 |
| GEAR DEPTH | 31 | 34 | 40 | 37 | 59 | . 46 | 58 | 30 | 14 | 28 | 32 |
| DURAIION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.30 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.50 | 1.20 | 1.30 | 1.10 | 1.10 | 0.80 | 1.30 | 1.10 | 1.40 | 1.40 | 1.60 |
| PERformance / Gear | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | ( / 20 | 0 /20 | 0 / 20 |
| POLlock | 2.7 | 11. 5 | 51.3 | 5.4 | 39.7 | 5.0 | 9.5 | 15.2 | 1.8 | 10.4 | 84.4 |
| Pac coo | 5.0 | 9.1 | 3.6 | 13.6 | 9.1 | 0.5 | 9.8 | 16.3 | 380.8 | 9.5 | 5.2 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFTSH | c. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.1 | 0.0 | 0.9 | 0.2 | 0.1 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| AtKA MaCKEREL | 0.0 | 0. 0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 29.6 | 18.4 | 12.7 | 3.9 | 7.2 | 2.0 | 9.4 | 14.8 | 40.9 | 10.2 | 11.8 |
| EELPOUIS | 0.1 | 2. 3 | 10.2 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RNDFISH | 0.9 | 0. 3 | 0.2 | 0.3 | 0.2 | 0.3 | 4.4 | 4. 3 |  | $7.3$ | 4.0 |
| TOT ROUNDFISH | 38.2 | 41. 6 | 78.0 | 23.7 | 56.2 | 7.8 | 33.3 | 50.6 | $42 \overline{7} .2$ | $37.7$ | 105.5 |
| YELLON SOLE | 398.7 | 214.1 | 153.3 | 121.8 | 92.5 | 84.4 | 79.8 | 197.0 | 527.8 | 366.0 | 255.6 J |
| ROCK SOLF. | 5.0 | 2.7 | 1.4 | 0.9 | 4.5 | 2.9 | 57.6 | 69.6 | 281.7 | 28.1 | 98.7 N |
| FLATHEAD SOLE | 0.9 | 7.5 | 9.1 | 4.5 | 2.7 | 1.1 | 3.6 | 1.5 | 0.5 | 29.5 | 7.9 |
| ALASKA PLAICE | 12.2 | 45.6 | 18.1 | 9.3 | 16.3 | 4.5 | 12.1 | 0.1 | 0.0 | 0.0 | 0.2 |
| GREENLAND TAI | 1.1 | 6.1 | 7.7 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ARROHIOOTH FL | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 |
| PAC HALIBUT | 0.5 | 0.5 | 2.3 | 2.5 | 2.7 | 0.0 | 5.2 | 5.4 | 11.5 | 10.5 | 5.3 |
| OTHER FLTFISH | 1.6 | 0. 5 | 0.1 | 0.0 | 0.1 | 1.1 | 7.3 | 3.2 | 20.9 | 108.4 | 4.3 |
| TOT FLATFISH | 420.0 | 276.9 | 192.1 | 140.6 | 118.9 | 94.1 | 164.8 | 277.7 | 842.4 | 542.8 | 372.3 |
| SKAIES | 0.0 | 0.0 | 0.8 | 0.0 | 1.1 | 0.0 | 0.0 | 21.8 | 0.0 | 0.0 | C. 0 |
| TOI ELASHD日RH | 0.0 | 0.0 | 0.8 | 0.0 | 1.1 | 0.0 | 0.0 | 21.8 | 0.0 | 0.0 | 0.0 |
| RED KING CRAB | 371.9 | 154.4 | 371.9 | 317.1 | 51.3 | 20.4 | 74.8 | 22.7 | 0.3 | 14.1 | 44.5 |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER. BAIRDI | 12.8 | 12.5 | 10.2 | 13.2 | 29.5 | 68.9 | 64.0 | 14.7 | 0.0 | 12.2 | 12.2 |
| IANNER, OPILIO | 4.1 | 5.7 | 8. 4 | 2.5 | 2.3 | 0.1 | 0.7 | 0.7 | 0.0 | 1.4 | 0.7 |
| TANNER. HYBRID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER CRAB | 19.1 | 17.9 | 15.6 | 9.5 | 3.6 | 2.7 | 4.2 | 9.4 | 0.5 | 72.7 | 1.9 |
| SNAILS | 18.0 | 7.3 | 12.8 | 1.6 | 1.1 | 0.1 | 0.3 | 0.0 | 0.0 | 5.4 | 0.4 |
| SHRIMP | 0.2 | D. 1 | 0.3 | 0.2 | 0.0 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 |
| STARFISH | 16.3 | 6.8 | 2.9 | 0.9 | 7.3 | 1.4 | 2.3 | 51.0 | 454.3 | 5.9 | 5.9 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OCTOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INVERIS | 1.6 | 5.0 | 1.5 | 6.5 | 336.4 | 9.9 | 370.0 | 90.3 | 0.8 | 5.3 | 3.3 |
| TOTAL INVERTS | 443.0 | 209.8 | 423.7 | 351.4 | 431.4 | 103.9 | 516.3 | 189.0 | 455.9 | 117.1 | 68.9 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 901.2 | 528.3 | 694.5 | 515.7 | 607.7 | 205.8 | 714.4 | 539.1 | 1725.4 | 697.5 | 546.7 |

Table A-la.--Continued.

| HAUL | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/DGY/YEAR | $6 / 1 / 78$ | 61. 2178 | 6/ 2178 | 6/ 2178 | $6 / 2178$ | $6 / 7178$ | 6/ 7178 | 617178 | 67. 7178 | 618178 | $6 / 8 / 78$ |
| LATITUDE START | 5558.0 | 5619.0 | 5619.0 | 56 20.0 | 5559.0 | 550.0 | 55 20.0 | 5519.0 | 5539.0 | 5559.0 | $6 / 8778$ $55+1.0$ |
| LONGITUDE START | 16214.0 | 16213.0 | 16246.9 | 16323.9 | 16323.0 | 16435.0 | 164000 | 16323.9 | 16250.0 | 16247.9 | 5541.0 16323.0 |
| LATITUDE END | $56 \quad 0.2$ | 5619.6 | 5619.3 | 5618.7 | 5558.8 | 551.8 | 5520.3 | 55 20.8 | 5540.7 | 16258.9 | $\begin{array}{r}163 \\ 55 \\ \hline 163.0\end{array}$ |
| LONGITUDE END | 16213.1 | 16215.3 | 16250.1 | 16324.3 | 16323.4 | 16435.0 | 16359.0 | 16324.3 | 16251.1 | 16248.3 |  |
| LOfian start | 33915.90 | 33824.00 | 33915.20 | 34011.50 | 34096.40 | 14479.80 | 34336.20 | 36243.00 | 34087. 20 | 16248.3 34003.80 | 16326.1 34168.00 |
| LORAN STAAT | 46977.80 | 46968.40 | 47197.10 | 47438.30 | 47433.90 | 47852.40 | 47655.30 | 47426.80 | 47216.00 | 47202.00 | 34168.00 47431.10 |
| LOFAN END | 33908.00 | 53828.50 | 33922.70 | 34018.50 | 34100.10 | 34475.20 | 34331:00 | 34234.50 | 34083.50 | 34008. 30 | 34172.70 |
| LORAN END | 46970.30 | 46980.90 | 47213.60 | 47440.80 | 47432.20 | 47851.50 | 47644.70 | 47424.70 | 47218.00 | 47202.20 | 34172.70 47445.00 |
| GEAR DEPTH | 34 | 42 | 61 | 44 | 46 | 35 | 41 | 27 | 28 | 61 | 47445.00 44 |
| DURATION IN HOURS <br> DISTANCE FISHED | 0.51) | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
|  | 1.40 $0 / 20$ | 1.10 0120 | 1.40 0.20 | 1.40 $0 \quad 20$ | 1.10 120 | 1.40 0.20 | +1.00 | 1.10 | 1.20 | 1.10 | 1.20 |
|  |  | 0.20 | 0.20 | $0 \% 20$ | 20 | $0 / 20$ | $0 / 20$ | 0/20 | - / 20 | $0 / 20$ | $0 / 20$ |
| POLLDCK | 254.0 | 97.1 | 59.9 | 53.5 | 126.6 | 8. 3 | 629.2 | 5.4 | 42.6 | 17.2 | 682.0 |
| PAC COD | 15.5 | 15.4 | 11.1 | 12.7 | 11.1 | 27.2 | 1.8 | 4.5 | 3.2 | 2.7 | 14.1 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.1 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH PAC herring | 11.8 | 0.0 | 0.7 | 0.0 | 37.9 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.1 |
| ATKA MACKEREL | 0.10 | 0.0 0.1 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 1.0 | 0.1 | 1.0 | 0.0 | 0.0 12.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 |
| EELPDUTS | 0.0 | 0.0 | 0.1 | 5.0 | 2. |  |  | H. | 31.3 | 9.1 | 7.3 |
| OTHER RNDFISH | 24.9 | 0.4 | 1.8 | 0. 2 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 |
| TOT RQUNOFISH | 311.3 | 113.0 | 75.4 | 76.2 | 191.1 | 0.1 | 1.3 628.2 | 2.4 18.9 | 4.0 81.1 | 7.9 37.2 | 6.4 116.4 |
| YELLOW SULE | 159.7 | 122.6 | 51.7 | 44.5 | 76.9 | 25.4 | 27.7 | 156.0 |  |  |  |
| ROCK SOLE | 21.3 | 10.0 | 2.3 | 6.8 | 13.6 | 24.3 | 27.7 9.5 | 156.0 23.6 | 274.6 42.0 | 160.1 | 168.7 F |
| Feathead sole | 12.7 | 3. 2 | 6.4 | 7.7 | 24.0 | 1.4 | 5.9 | 16.3 | 3.6 | 37.0 | 40.4 |
| ALASKA flaice | 0.0 | 7.2 | 5.5 | 12.7 | 18.4 | 0.0 | 0.7 | 16.3 9.1 | 3.6 0.0 | 37.0 | 40.4 |
| GREENLAND TBT | 0.0 | 0.0 | 0.2 | 3.1 | 0.5 | 0.0 | 0.0 | 0.10 | 0.0 | 18.2 0.0 | 9.1 0.0 |
| ARROHTOOTH FL. | 1.4 | 0.1 | 0.1 | 0.1 | 1.8 | 0.0 | 5.0 | 6.8 | 0.7 | 2.9 | 0.7 |
| PAC MALIBUT | 0.9 | 0. 5 | 5.2 | 1.6 | 2.0 | 6.8 | 6.8 | 5.4 | 0.0 | 3.7 | 0.8 |
| OTHER FLIfISH | 1.4 | 0.9 | 0.0 | 0.0 | 0.1 | 1.4 | 1.1 | 1. 6 | 14.1 | 3.7 0.1 | 5.8 0.0 |
| TOT FLATFISH | 197.3 | 143.3 | 71.5 | 76.6 | 13 P. 3 | 59.2 | 56.7 | 218.9 | 235.0 | 224.4 | 229.5 |
| SKATES | 0.0 | 1.6 | 0.0 | 0.0 | 1.8 | 13.6 | 0.0 |  |  |  |  |
| TOT ELASHOBRH | 0.0 | 1.6 | 0.0 | 0.0 | 1.8 | 13.6 13.6 | 0.0 | 10.0 10.0 | 0.0 0.0 | 3.6 3.6 | 5.9 |
| RED KING CRAB | 219.5 | 51.7 | 32.8 | 14.5 | 3.2 | 31. 3 | 155.1 | 113.4 |  |  |  |
| BLUE KIKG CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0. | 255.8 | 113.4 | 59.0 | 90.7 | 110.6 |
| TANNER, BAIRDI | 10.9 | 35.4 | 10.9 | 5.4 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER, OPILIO | 2.3 | 1.8 | 1.8 | 3.2 | 14.6 | O. 5 | 52.4 | 68.9 | 8.6 | 76.9 | 41.7 |
| TANMER, HYORID | 0.0 | 0.0 | 0.0 | 0. 0 | 0.0 | 0. | 2.8 | 0.9 | 0.0 | 18.6 | 17.2 |
| OTHER CRAG | 6.4 | 1.7 | 4.9 | 0.0 | 0.0 | 0.0 | 0.5 | 0.9 | 0.0 | 0.0 | 1.4 |
| SNAILS | 0.1 | 2.1 | 1.4 | 10.1 | 8. 1 | 3.6 | 24.3 | 2.3 | 4.1 | 4.5 | 19.5 |
| SHRIMP | 0.0 | 0.0 | 1.4 | 11.3 0.1 | 11.6 | 0.9 | 0.7 | 0.0 | 1.4 | 1.1 | C. 1 |
| STAPFISH | 3.2 | 15.0 | 4.5 | 2.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| SOUID | C. 0 | 0.0 | 0.0 | 0.0 | 0. |  | 0 | 4 | 0.0 | 2.7 | 0.0 |
| DCTOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INVERTS | 0.0 | 58. 3 | 6.1 | 0.1 | 850.0 | 0.9 | 0.0 2.7 | 0.0 | 0.0 | 0.0 | C. 0 |
| TOTAL INYERTS | 242.4 | 166.0 | 61.4 | 48.9 | 921.8 | 46.5 | 238.4 | 201.6 | 73.0 | 194.6 | 256.5 |
| OTHER | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 751.0 | 423.9 | 200.3 | 202.2 | 1252.0 | 165.0 | 923.3 | 449.4 | 389.1 | 459.8 | 1202.3 |

Table A-la.--continued.

| Have | 57 | 58 | 59 | 60 | 61 | 62 | 65 | 64 | 65 | 66 | 67 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/DAY/YEAR | 618178 | 618170 | $6 / 9178$ | $6 / 9 / 78$ | 6/9/78 | $6 / 10178$ | 6/10/70 | 6/10/78 | 6/10/78 | 6/11/78 | 6/11/78 |
| LAIITUDE START | 5539.0 | 5539.0 | 55 20.0 | 55 20.0 | 551.9 | 550.0 | 5519.0 | 5520.0 | 5540.0 | 5541.0 | 5541.0 |
| LDNGITUDE START | 16359.0 | 16435.0 | 16435.0 | 16623.9 | 16619.0 | $166 \quad 57.0$ | 16657.0 | 167 31.9 | 1688.9 | 16734.0 | 16659.0 |
| LAIITUDE END | 5539.2 | 55 38.8 | 5520.2 | 5519.7 | 551.3 | $55 \quad 2.1$ | 5519.8 | 5521.7 | 5542.2 | 5541.6 | 55 41.5 |
| LONGITUDE END | 1642.2 | 16435.7 | 16437.0 | 16624.9 | 166.21.1 | 16657.1 | 16659.0 | 16734.0 | 16810.1 | 16732.8 | 16657.6 |
| LORAN START | 34271.50 | 34366.20 | 34426.40 | 34711.20 | 34736.00 | 34824.90 | 34795.20 | 34878.50 | 34938.00 | 34852.40 | 34760.20 |
| LDRAN START | 47662.00 | 47889.40 | 47871.50 | 48540.10 | 48472.97 | 48685.30 | $4 E 730.10$ | 48932.80 | 49193.00 | 48998.30 | 48791.00 |
| LORAN END | 34278.40 | 34371.30 | 34431.50 | 34715.20 | 34740.60 | 34823.70 | 34800.20 | 34880.90 | 34937.70 | 34847.00 | 34754.50 |
| LORAN END | 47676.80 | 47891.90 | 47883.70 | 48542.10 | 48483.50 | 48689.00 | 48740.30 | 48942.70 | 49199.60 | 48986.50 | 48780.00 |
| GEAF DEPIH | 49 | 51 | 54 | 70 | 75 | 81 | 73 | 77 | 70 | 71 | 70 |
| DURATION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.30 | 1.20 | 1.10 | 1.20 | 1.10 | 1.10 | 1.10 | 1.10 | 1.30 | 1.10 | 1.10 |
| Perforhance / Gfar | 0.120 | $0 / 20$ | 0120 | 0120 | $0 / 20$ | $0 \cdot 20$ | 0 / 20 | - / 20 | 0 / 20 | $0 / 20$ | $0 / 20$ |
| POLLOCK | 80.7 | 48.5 | 17.1 | 64.9 | 139.3 | 41.3 | 89.8 | 116.6 | 34.0 | 85.7 | 31.3 |
| PAC COD | 12.7 | 12.7 | 9.1 | 0.0 | 3.2 | 8.2 | 7.7 | 73.0 | 78.0 | 34.5 | 2.3 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.1 | 0.0 | 0.9 | 6.4 | 6.1 | 0.5 | 0. 0 | 1.4 | 0.0 | 3.6 | 2.7 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ATKA MACKEREL | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 2.3 | 0.7 | 2.7. | 7.3 | 7.3 | 9.5 | 6.8 | 6.8 | 9.5 | 5.4 | 6.4 |
| EELPOUIS | 5.4 | 1.8 | 6.4 | 93.9 | 27.2 | 8.2 | 102.5 | 1.8 | 3.2 | 59.4 | 56.7 |
| OTHER RNOFISH | 0.2 | 0.0 | 0.4 | 5.4 | 0.5 | 0.1 | 4.1 | 0.0 | 0.2 | 9.5 | 7.8 |
| IOT.REUNDFISH | 101.4 | 63.7 | 96.8 | 177.8 | 183.5 | 67.7 | 210.9 | 199.6 | 124.9 | 190.2 | 107.2 |
| YELLOH SOLE | 25.9 | 5.9 | 16.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 J |
| FOCM SULE. | 45.8 | 9.1 | 7.7 | 0.0 | 0.0 | 0.0 | $0: 0$ | 0.0 | 0.2 | 0.0 | 0.0 - |
| FLATHEAD SCLE | 16.3 | 3.4 | 8.6 | 50.3 | 29.5 | 29.0 | 58.1 | 25.4 | 13.2 | 69.9 | 45.8 |
| alaska plaice | 3.4 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| GREEMLAND TEI | 0.1 | 0. 0 | 0.0 | 6.8 | 1.5 | 0.0 | 1.8 | 1. 6 | 1.4 | 18.8 | 13.6 |
| ARROWTOCTH FL | 5.9 | 1.8 | 21.8 | 17.7 | 24.0 | 26.8 | 41.3 | 22.2 | 28.1 | 26.8 | 10.9 |
| PAC HALISUT | 0.9 | 0.0 | 1.4 | 4.5 | 7.9 | 5.4 | 0.0 | 1.6 | 5.7 | 30.8 | 0.0 |
| OTHER FLIFISH | 0.1 | 0. 0 | 5.4 | 2.7 | 1.8 | 0.7 | 2.9 | 0.5 | 0.5 | 0.0 | 0.5 |
| TOT FLAIFISH | 98.5 | 20.5 | 62.0 | 82.1 | 64.9 | 61.9 | 104.1 | 51.3 | 49.0 | 139.3 | 70.8 |
| SKATES | 0.7 | 4.5 | 9.1 | 23.6 | 3.2 | 0.5 | 14.1 | 44.5 | 0.7 | 34.9 | 12.7 |
| JOI ELASMOBRH | 0.7 | 4.5 | 9.1 | 23.6 | 3.2 | 0.5 | 14.1 | 44.5 | 0.7 | 34.9 | 12.7 |
| REO KING CRAB | 56.7 | 10.0 | 230.9 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | c. 0 |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER P BAIRDI | 82.6 | 38.1 | 28.6 | 13.2 | 34.6 | 27.2 | 10.4 | 24.9 | 45.8 | 24.0 | 15.4 |
| TANRER, OPILIC | 38.6 | 33.1 | 44.9 | 3.9 | 6.4 | 1.4 | 0.2 | 0.2 | 0.0 | 0.0 | 1.6 |
| TANNER HYBRID | 1.1 | 0.0 | 0.5 | 0.7 | 12.2 | 1.4 | 1.8 | 0.2 | 0.2 | 0.0 | 0.9 |
| OTHER CRAB | 8.6 | 16.8 | 9.1 | 0.0 | 2.7 | 0. 0 | 0.0 | 2.5 | 0.9 | 1.4 | 0.5 |
| SNAJLS | 5.1 | 19.1 | 1.8 | 0.9 | 0.7 | 3.6 | 2.5 | 5.4 | 5.0 | 4.1 | 1.1 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| STARFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 244.9 | 0.0 | 0.0 |
| SOUIO | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DCIOPUS | 4.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.6 | 0.0 | 0.0 |
| DTHER INVERIS | 55.3 | 0.0 | 0.0 | 0.0 | 4.5 | 10.0 | 0.0 | 7.7 | 2.9 | 0.0 | 0.0 |
| TOTAL INVERTS | 252.1 | 117.0 | 315.1 | 10.6 | 66.5 | 48.6 | 15.0 | 41.0 | 318.6 | 29.5 | 19.5 |
| OTHER | 0.0 | ก. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CAICH | 452.6 | 205.8 | 483.6 | 302.1 | 318.0 | 178.7 | 344.0 | 336.3 | 493.0 | 401.9 | 210.1 |

Table A-1a.--Continued.

| HAUL | 68 | 69 | 70 | :1 | 72 | 73 | 74 | 75 | 76 | 77 | 78 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/OAY/YEAR | 6/11/78 | 6/11/78 | 6/12178 | 6/12/78 | 6/12/78 | $6 / 13178$ | 6/13/78 | 6118178 | $6 / 18 / 78$ | 6/18/78 | 6/18178 |
| LAIITUDE STARI | 5540.0 | 55 59.0 | 560.0 | 5559.0 | 56 C. 0 | 5619.0 | 5620.0 | 56 40.0 | 5641.0 | $57 \quad 0.0$ | 5720.0 |
| LONGITUDE STAFI | 16622.0 | 166 23.0 | 1670.0 | 15736.0 | 16812.0 | 16852.0 | 16814.0 | 16929.0 | 16853.0 | 16931.9 | 5720.0 1693600 |
| LATITUDE FND | 5541.4 | 56 1.3 | 560.7 | 561.1 | 56 1.3 | 5620.1 | 5620.3 | 56 -0.2 | 5640.9 | 571.2 | 169 57 18.9 |
| LONGITUDE ENO | 16622.8 | 16623.7 | 167 2.2 | 167 37.1 | 16812.5 | 168 52.0 | 168130 |  |  | 57 1.2 | 5718.9 |
| LORAN STARI | 34662.90 | 34610.20 | 34715.50 | 34820.10 | 34916.00 | 14990.40 | 16813.0 34883.20 | 16928.2 | 16852.9 | 16933.5 | 16938.6 |
| LORAN START | 48565.70 | 48602.20 | 48812.50 | 49052.60 | 49263.40 | 49553.90 | 34883020 | 35056.00 | 34946.00 | 35018.00 | 34904.00 |
| LORAN END | 34659.80 | 34606.00 | 34720.00 | 34819.30 | 34915.00 | 34985.00 | 49330.90 | 45828.00 | \$9612.00 | 49896.00 | 49896.00 |
| LDAAN END | 48568.30 | 48603.90 | 48844.60 | 49059.70 | 49268.80 | 49543.20 | 34876.80 49319.30 | 35053.00 49818.00 | 34946.00 49610.00 | 35017.00 49902.00 | 34914.00 |
| GEAR DEPTK | 66 | 65 | 71 | 70 | - 79 | 697 67 | 4319030 00 | 9810.00 .43 | 49610.00 53 | 49902000 35 | 49910.00 35 |
| DURATION IN HDURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 | 0.50 | 0.50 | 0.50 | - 35 | 35 0.50 |
| DISTANCE FISHED | 1.30 | 1.30 | 1.10 | 1.30 | 1.20 | 1.10 | 1.10 | 1.00 | 1.40 | 1.00 | 0.50 1.20 |
| PEFFDFMANCE/ GEAR | $0 / 20$ | $0 / 20$ | 0 - 20 | 0 /20 | $0 / 20$ | $0 \% 20$ | $0 \% 20$ | $0 \% 20$ | $0 \% 20$ | $0 \% 20$ | -1\%20 |
| POLLDCK | 116.1 | 16.3 | 53.5 | 77.6 | 59.0 | 303.9 | 148.3 | 0.9 | 909.0 |  |  |
| PAC COD | 0.0 | 9.1 | 0.7 | 7.3 | 152.7 | 62.6 | 148.3 | 59.9 | 909.0 0.0 | 0.1 8.6 | 1.1.8 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 59.4 0.0 | 0.0 0.0 | 8.6 | 21.8 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 |
| SABLEFISH | 4.1 | 0.0 | 6.4 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ATKA HACKEREL | 0.0 | 0. 0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | C. 0 |
| SCULPINS | 4.1 | 0.0 | 10.0 | 18.6 | 12.2 | 2.7 | 14.1 | 543.9 | 72.6 | 20.4 | 19.5 |
| EELPOUTS | 34.5 | 3.2 | 27.7 | 24.5 | 11.3 | 0.0 | 7.3 | 0.0 | 2.7 | 0.0 | 0.0 |
| OTHER RNDFISH | 7.3 | 0. 2 | 8. 4 | 18. 1 | 0.0 | 0.0 | 0.5 | 6.5 | 0.0 | 1.8 |  |
| TOT ROUNDFISH | 166.0 | 28.8 | 106.6 | 146.7 | 235.6 | 369.2 | 206.4 | 610.8 | 984.3 | 31.8 | 4.7 47.4 |
| YELIDN SOLE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.2 | 31.8 | 13.6 |  |
| ROCK SOLE | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 6.8 | 2.7 | 105.7 | 4.1 | 20.6 | 19.5 ज |
| Flathead sole | 48.5 | 20.9 | 74.4 | 73.0 | 12.2 | 18.1 | 1.6 | 10.0 | 4.7 | 30.8 | 13.6 |
| alaska plaice | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 | .0.0 | 0.0 | 0.0 | 0.0 | C.0 |
| GREEMLAND IBI | 9.1 | 3.6 | 7. 3 | 14.1 | 0.0 | 0.1 | 0.0 | 0.9 | 3.6 | 0.7 | 5.9 |
| ARAOMIOOTH FL | 28.0 | 0.7 | 14.5 | 7.7 | 12.7 | 16.8 | 34.9 | 4.1 |  | 0.1 | 0.0 |
| Pac haligut | 0.0 | 0.0 | 2.5 | 5.4 | 12.8 0.0 | 16.8 2.6 | 34.9 1.5 | 4. 10 | 5.2 | 0. 0 | 0.0 |
| OTHER FLTFISH | 0.1 | 0.0 | 0.0 | 0.0 | 0.5 | 0.9 | 1.4 | 0.0 | 0.0 | 0.0 0.0 | C. 0 |
| TOT FLATFISH | 85.7 | 25. 2 | 98.7 | 100.2 | 27.4 | 45.4 | 41.8 | 210.9 | 4 | 0.0 45.3 | 6.0 39.7 |
| SKATES | E. 4 | 10.0 | 3.2 | 12.7 | 2.0 | 7.3 | 5.4 | 0.0 | 0.5 |  |  |
| TOT ELASMOBRH | 6.4 | 10.0 | 3.2 | 12.7 | 2.0 | 7.3 | 5.4 | 0.0 | 0.5 0.5 | 0.0 0.0 | 0.0 0.0 |
| RED KING CRAB | 0.0 | n. 0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| BLUE KING CRA ${ }^{\text {g }}$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 | 259.0 | 6.0 20.9 |
| TANNER. BAIRDI | 5.0 | 0.0 | 6.4 | 3.2 | 1.4 | 2.7 | 15.0 | 22.2 | 4.3 | 6.1 | 20.9 |
| TANNER, OPILID | 1.4 | 5. 0 | 4.5 | 1.8 | 0.5 | 0.0 | 96.2 | 37.2 | 126.6 | 54.0 | 247.2 |
| TANNER- HYERID | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.2 | 1.1 | 1.4 | 126.6 1.6 | 54.0 0.2 | 247.2 0.0 |
| OTHER CAAB | 1. ${ }^{\text {E }}$ | 0.9 | 0.9 | 0.0 | 0.7 | 4.1 | 0.2 | 30.1 | 2.7 | 27.2 | 6.02 |
| SNAILS | 0.5 | 0.7 | 1.6 | 0.8 | 0.2 | 0.2 | 0.3 | 0.3 | 1.4 |  |  |
| SHRIMP | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 1.4 | 0.3 | 1.0 | 3.9 | 0.0 |
| STARFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 0.0 | 0.0 | 0.0 | 0.0 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 2. 3 | 0.0 | 0.0 0.0 | 8.2 | 1.8 |
| OC TOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INYERTS | 0.0 | 0.0 | 0.0 | 0.0 | 15.9 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 | $0 \cdot 0$ |
| TOTAL INVERTS | 8.6 | 6.6 | 14.0 | 5.7 | 18.6 | 12.3 | 116.5 | 179.5 | 136.3 | 10.0 380.0 | 352.0 |
| OTHER | 0.9 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| total caich | 266.7 | 10.5 | 222.5 | 265.4 | 283.5 | 434.2 | 370.2 | 1001.2 | 1166.4 | 456.2 | 439.0 |

Table A-1a.--Continued.

| have | 79 | en | 81 | 88 | 89 | 90 | 111 | 112 | 113 | 114 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/CAY/YEAR | 6/19178 | 6/19/78 | 6/19/78 | $6 / 30178$ | $6 / 30178$ | $6 / 30 / 78$ | 717178 | 717178 | 717178 | 717178 |  |
| LAJITUDE START | 5720.0 | 57 19.0 | 571.0 | 5445.0 | 5440.0 | 54 32:0 | 57 39.0 | 5740.0 | 5739.0 | 5740.0 |  |
| LONGITUCE STARI | 17012.0 | 17051.0 | 1707.0 | 16539.9 | 16652.0 | 16653.0 | 16321.0 | 16244.0 | 1627.0 | 16130.0 |  |
| LATITUDE END | 5719.4 | 57 20.3 | 57 1:0 | 54 42.9 | 5440.4 | 5431.2 | 5740.1 | 5740.5 | 5759.0 | 57 40.1 |  |
| LONGITUDE END | 17015.9 | 17053.0 | 1706.0 | 16543.1 | 16651.8. | 16652.0 | 16319.2 | 16242.2 | 1626.3 | 26128.6 |  |
| LOAAN START | 18719.00 | 18516.00 | 18707.00 | 34671.00 | 34842.00 | 34852.00 | 33562.00 | 33462.00 | 33375.00 | 33280.00 |  |
| LORAN START | 50095.00 | 50153.00 | 50111.00 | 46218.00 | 48613.00 | 48595.00 | 41390.00 | 47144.00 | 46902.00 | 46653.00 |  |
| LORAM END | 18704.00 | 12506.00 | 12706.00 | 34683.00 | 34840.00 | 34851.00 | 33555.00 | 33455.00 | 33374.00 | 33276.90 |  |
| LORAN END | 50110.00 | 50151.00 | 50100.00 | 48230.00 | 48607.00 | 48586.00 | 47376.00 | 47130.00 | 46892.00 | 46642.00 |  |
| SEAR DEPTH | 32 | 44 | 35 | 150 | 204 | 252 | 25 | 22 | 25 | - 28 |  |
| DURATIDN IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 |  |
| DISTANCE FISHED | 1.70 | 1.10 | 1.10 | 1.40 | 1.20 | 1.40 | 1.10 | 1.20 | 0.90 | 0.90 |  |
| PERFIRHANCE GEAR | $0 / 20$ | 0/20 | 0120 | -120 | 0120 | 0120 | $0 / 20$ | 0120 | 0.20 | $0 / 20$ |  |
| POLLOCK | 0.7 | 199.6 | 1.8 | 40.8 | 1.1 | 1.6 | 0.9 | 0.1 | 0.9 | 7.3 |  |
| PAC COD | 2.7 | 12.2 | 9.5 | 120.7 | 0.0 | 0.0 | 6.4 | 0.9 | 10.4 | 20.0 |  |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 1.8 | 1.8 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| OTHER RCKFISH SABLEFISH | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.5 | 1.4 20.4 | 0.0 0.0 | 0.0 | 0.0 | 0.0 |  |
| PAC HERRING atka hackerel | 0.0 0.0 | 0.0 0.0 | 0.0 | 0.0 0.0 | 0.0 $C .0$ | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 |  |
| SCULPINS | 0.5 | 48.5 | 5.0 | 14.1 | e. 4 | 5.9 | 54.0 | 13.6 | 15.9 | 22.7 |  |
| EELPDUTS | 0.0 | 0.9 | 0.0 | 0.0 | 1.1 | 22.2 | 0.0 | 2.0 | 20.0 | 0.0 |  |
| OTHER RNDFISH | 0.2 | 0.0 | 0.1 | 11.8 | 2.4 | 11.9 | 2.8 | 4.6 | 2.4 | 9.6 |  |
| TOI ROUNDFISH | 4.1 | 261.3 | 16.5 | 189.1 | 14.2 | 64.3 | 64.1 | 19.3 | 29.6 | 59.5 |  |
| YELLOW SULE | 2.1 | 1.8 | 26.3 | 0.0 | 0.0 | 0.0 | 352.0 | 323.9 | 219.5 | 364.2 | $\cdots$ |
| ROCK SOLE | 4.5 | 0.9 | 21.3 | 0.0 | 0.0 | 0.0 | 20.0 | 10.0 | 3.9 | 33.1 | 0 |
| FLATHEAD SOLE | 0.0 | 4.1 | 0.1 | 4.1 | 34.9 | 0.5 | 2.3 | 1.4 | 1.6 | 3.2 |  |
| alaska plaice | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 23.1 | 4.1 | 1.8 | 2.7 |  |
| GREENLAND IBT | 0.0 | 12.7 | 0.1 | 0.0 | 84.8 | 35.8 | 0.5 | 0.0 | 0.1 | 0.1 |  |
| ARROMTOOTH FL | C. 0 | 0. 0 | 0.0 | 84.4 | 16.3 | 9.8 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| PAC HALIBUT | 0.2 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| OTHER FLIFISH | 0.0 | 0. 0 | 0.0 | 1.8 | 2.5 | 3.2 | 7.3 | 5.4 | 7.9 | 6.8 |  |
| TOI FLATEISH | 5.9 | 19.5 | 51.4 | 90.3 | 138.6 | 49.2 | 405.1 | 344.7 | 234.8 | 410.1 |  |
| ska tes | 0.0 | 0.0 | 7.7 | 56.2 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| TOT ELASNOBRH | 0.0 | 0.0 | 7.7 | 56.2 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| HED KING CRAb | 0.0 | 0. 0 | 0. 0 | 0.0 | 0.0 | 0.0 | 8.2 | 40.6 | 91.2 | 60.3 |  |
| BLUE KING CRAB | 0.0 | 13.6 | 21.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| TANMER BALRDI | 0.2 | 4.3 | 11.3 | 24.9 | 0.0 | 0.0 | 0.2 | 0.2 | 0.9 | 13.6 |  |
| TANNER, OPILIO | 5.2 | 94. 3 | 20.6 | 0.0 | 0.0 | 0.1 | 1.8 | 0.1 | 0.2 | 0.0 |  |
| TANNER, HYGRID | 0.0 | 0.0 | 6.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| DTHER CRAB | 10.4 | 5.4 | 33.1 | 0.0 | 0.0 | 0.5 | 4.1 | 2.4 | 0.5 | 4.6 |  |
| SHAILS | 0.1 | 5.4 | 19.7 | 0.2 | 4.5 | 2. 8 | 13.6 | 2.7 | 0.9 | 0.9 |  |
| SHRIMP | 0.0 | 0.0 | 0.0 | 1.8 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| STARFISH | 0.0 | 0.0 | 74.8 | 1.4 | 25.9 | 20.4 | 52.2 | 22.7 | 7.4 | 8.8 |  |
| SQuld | 0.0 | 0. 0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| OCIOPUS | 0.0 | 0.0 | 0.0 | 0.1 | 2.7 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| OTHER INIERTS | 0.0 | 0. 0 | 2.7 | 0.0 | 168.3 | 22.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| TOTAL IKVERTS | 16.0 | 123.1 | 198.0 | 28.4 | 204.5 | 48.2 | 80.1 | 68.5 | 101.0 | 88.3 |  |
| DTHER | 0.0 | 0. 0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| total catch | 26.0 | 403.9 | 273.8 | 364.1 | 358.9 | 161.7 | 549.2 | 432.4 | 365.4 | 558.0 |  |

Table A-lb.--Station and catch data for hauls successfully completed--paragon II.

| haul | $611817^{1}$ | 2 | 3 | 4 | 11 | 14 | 15 | 16 | 17 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LATITUDE START | $6 / 18 / 78$ 54590 | $6 / 19178$ | 6/19/70 | $6 / 19178$ | 6/25/18 | 6125178 | 6/26/78 | 612617e | 6/26/78 | 6/26/78 | 6/27/78 |
| LONGITUDE START | 5459.9 16544.0 | 55 165 16509 | 55 1659.0 | 56 0.0 | 5615.0 | 5619.0 | 5617.0 | 5639.0 | 5639.0 | $56 \quad 40.0$ | 57 C.0 |
| LATITUDE END | 551.6 | 165 56.9 | 16547. | 16545.9 | 16924.9 | 1706.0 | 17044.0 | 17121.0 | 17156.0 | 17232.9 | 173.15.0 |
| LONGITUOE ENO | 18544.9 | 165 66.4 | 16548.6 | 165 1.5 | 5614.9 | $\begin{array}{ll}56 & 19.6\end{array}$ | 5617.5 | 5640.8 | 5640.4 | 5641.1 | 570.2 |
| LORAN STABT | 34654.60 | 34618.20 | 16548.6 34567.80 | 16546.3 34502.00 | 16920.5 | 17010.6 | 17048.2 35135080 | 17123.7 | 17159.4 | 17236.4 | 17312.6 |
| LORAN START | 48260.20 | 48314.20 | 48349000 | 34502.00 | 35070.90 | 35128.50 | . 55135.50 | 35071.00 | 34997.20 | 36913.30 | 17550.10 |
| LORAM END | 34651.50 | 34612.30 | 34562.70 | 34495.30 | 49709.39 35076.50 | 49906.40. | 50008.00 | 18195.70 | 17975.69 | 17743.50 | 34728.40 |
| LORAN END | 48272.00 | 48313.00 | 48356.60 | 48365.00 | 35076.50 69722.60 | 35131.50 49920.00 | 35133.90 | 35064.00 | 34990.00 | 34904.20 | 17566.10 |
| GEAR DEPTH | 66 | 403135 | 48350.60 | +8365.00 | 69722.60 151 | 49920.00 59. | 50016.90 65 | 18184.80 62 | 17963.40 68 | $\begin{aligned} & 17731.60 \\ & 73 \end{aligned}$ | $\begin{array}{r} 34733.80 \\ 76 \end{array}$ |
| DURATION IN HDURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 | 0.50 | 0.50 | 0. 50 |  | - 56 |
| DISTANCE FISHED | 1.70 | 1.E0 | 2.00 | 1.50 | 1.60 | 2.00. | 1.90 | 0.50 1.70 | 0.50 1.50 | 0.50 1.70 | 0.50 1.30 |
| PERFORMANCE GEAR | - / 20 | $0 \leqslant 20$ | 0120 | 0120 | 0.20 | $0 / 20$ | - 120 | $0 / 20$ | 0120 | 0120 | 0120 |
| POLLOCK | 39.8 | 71.0 | 231.1 | 164.2 | 63.8 | 994.0 | 165.7 | 102.9 | 112.9 | 338.5 | 82.2 |
| PAC CDD | 3132.1 | 3.4 | 0.0 | 0.3 | 16.1 | 1.2 | 30.4 | 4.2 | 21.5 |  | - 2.2 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 97.8 | 0.0 | 0.0 | 4.2 | 21.5 0.0 | 26.0 0.0 | 5.6 |
| OTHER RCKFISH | 0.0 | 4. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 1.3 | 0.0 | 0.0 | 1.3 | 0.0 | 1.1 | 0.0 | 0.0 0.0 | 0.0 2.8 | 0.0 | 0.0 0.0 |
| PAC HERAING | c. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 |
| ATKA MACKEEEL | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 9.8 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 $C .0$ |
| SCULPINS | 6. 4 | 6.7 | 0.0 | 6.3 | 84.2 | 11.0 | 24.4 | 0.7 | 3.9 | 10.8 | 3.5 |
| EELPDUTS | 1.1 | 12. 1 | 0.7 | 63.5 | 0.4 | 0.3 | 2.7 | 6.3 | 5.6 | 11.2 | 14.0 |
| OTHER RNDFISH | 0.9 | 7.3 | 0.7 | 0.6 | 24.8 | 1.9 | 0.0 | 0.7 | 0.3 | 0.2 | 0.9 |
| TOT RTUNDFISH | 5182.8 | 161.1 | 240.5 | 264.2 | 285.0 | 1019.3 | 223.1 | 122.7 | 147.4 | 386.7 | 106.2 |
| YELLON SOLE | 0.1 | 0.0 | 0.0 | 0.5 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| RDCK SOLE | 0.0 | 0. 0 | 0.0 | 0.2 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 1.1 | 2.5 |
| FLATHEAD SOLE | 6.9 | 63.0 | 13.3 | 44.4 | 0.0 | 38.3 | 72.0 | 5.2 | 2.5 | 2.4 | 0.9 |
| ALASKA PLAICE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| GREENLAND TBT | 2.1 | 0.2 | 0.0 | 5.2 | 3.6 | 7.9 | 2.4 | 5.3 | 1.0 | 0.6 | 0.3 |
| ARRDWIOCTH FL | 4.6 | 10.8 | 1. 2 | 10.8 | 41.6 | 9.6 | 14.3 | 6.4 | 6.2 | 10.2 | 9.1 |
| PAC HALIBLI | 0.0 | 0. 0 | 0.0 | 2.4 | 0.0 | 6.8 |  |  |  | 10.0 0.0 | 0.0 |
| DTHER FLTFISH | 1.0 | 0.8 | 0.2 | 0.0 | 0. 5 | 6.8 | 0.0 | 0.0 0.5 | 0.0 0.0 | 0.0 0.2 | 0.0 |
| TOT FLATFISN | 14.7 | 74.8 | 14.7 | 63.4 | 45.3 | 62.9 | 89.3 | 17.4 | 9.8 | 15.1 | 12.8 |
| SKATES | 2.6 | 12.3 | 0.0 | 32.3 | 3.0 | 0.0 | 0.0 | 2. 6 | 6.6 | 0.0 |  |
| TOT ELASMOBRA | 2.6 | 12.3 | 0.0 | 38.3 | 3.0 | 0.0 | 0.0 | 2.8 | 6.6 | 0.0 | 7.9 |
| RED KING CRAA | 11.3 | 4.1 | 4.1 | 39.5 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 |
| TANKER. BAIROI | 6.4 | 6. 5 | 3.2 | 4.1 | 0.8 |  |  |  | 0.0 | 0.0 | 0.0 |
| TANAERA OPILIO | 0.2 | 0.2 | 0.5 | 2.7 | 0.8 0.1 | 3.9 0.0 | 10.6 0.0 | 7.8 76.7 | 19.7 | 6.4 | 4.9 |
| TAMNFR. HYBRID | 0.0 | 0.1 | 0.0 | 0.5 | 1.5 | 0.1 | 0.7 | 76.7 .0 .0 | 2.5 | 0.5 | 0.0 |
| DIHER CAAB | 0.0 | 0.5 | 0.0 | 1.6 | C. 1 |  | 1.5 | 0. 0 | 0.7 | 0.1 | 0.0 |
| SNAILS | 0.0 | 0. 2 | 0.0 | 2.3 | 0.4 | 0.6 | 1.6 | 5. 9 | 5.6 | 1.4 | 2.3 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.6 | 1.6 | 5.9 0.6 | 5.2 | 0.5 | 0.5 |
| STAFFISH | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 | 5.9 | 61.3 | 20.6 | 287.0 | 0.0 | 0.3 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 | 7.3 | 0.0 | 6. 0.0 | 24.8 | 287.9 | 22.1 | 0.0 |
| OCIOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 |
| OTHER INYERTS. | 0.0 | 1.in | 0.1 | 0.0 | 10.0 | 0.0 | 8.1 | 5.5 | 0.0 | 7.5 | 0.0 |
| TOTAL INVERTS | 17.9 | 10.9 | 7.8 | 50.8 | 35.0 | 12.8 | 82.8 | 0.0 225.5 | 0.0 319.7 | 0.0 | 0.5 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOIAL CATCh | 3218.0 | 259.1 | 263.0 | 416.7 | 368.3 | 1094.0 | 395.2 | 268.4 | 483.4 | 440.6 | 137.3 |

Table A-lb.--Continued.


Table A-lb.--Continued.

| HaUl : RONTH/DAY/YEAR | $\begin{array}{r} 34 \\ 6 / 30178 \end{array}$ | 57 $7 / 7178$ | 58 | 59 7179 | 60 | 61 | 62 | 63 | 64 | 65 | 66 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LATITUDE START | 5615.0 | 5719.0 | 57190 | 51 1900 | 777176 | 178178 | 178178 | 7/13/78 | 1/13/18 | 7/13/78 | 7/13/76 |
| LONGITUCE STAET | 1671.9 | 16438.0 | 16519 | 16519.0 | 5718.0 | 5620.0 | 5622.0 | 57 40.0 | 5738.0 | 5739.0 | 5739.0 |
| LATITUDE END | 5619.9 | 5717.2 | 16) 18.? | 16546.9 57 | 16624.9 | 16547.9 | 16624.9 | 166 30.9 | 16553.0 | 16515.9 | 16436.0 |
| LONGITUDE END | 16659.0 | 16438.5 | 1655.1 | 57 16551.5 | 57 16624.7 | 5620.9 16551.6 | 56 166 28.2 | $\begin{array}{r}57 \\ 166 \\ \hline 6.7\end{array}$ | 57 40.2 | 57 38.e | 5740.2 |
| LORAN START | 34663.70 | 33908.40 | 33989.70 | 34120.80 | 34250.90 | 34430.5 | 166 2a.6 | 166 20.2 | 16551.6 | 16513.4 | 16434.5 |
| LORAN START | 18596.00 | 1 e7 32.60 | 18732.10 | 18736.60 | 18137.90 | 48396.10 | 44539.60 | 34116.00 | 34008.00 | 33889.70 | 33776.30 |
| LOFAN END | 34651.50 | 33925.00 | 33994.70 | 34132.30 | 34250.80 | 48496.10 | 48639.10 34548.69 | 48641.50 36109.60 | 42398.20 33992.20 | 48150.70 33885.90 | 47891.00 |
| LORAN END | 18599.30 | 18730.00 | 18733.00 | 18736.90 | 18737.00 | 48415.60 | 48659.00 | 48623.60 | 43992.20 4838.60 | 33885.90 48132.40 | $33761.90$ |
| GEAR DEPTH | 60 | 35 | 36 | 36 | 36 | 49 | 55 | 35 | 34 | 31 | +7073.20 20 |
| DURATION IN HOURS | U. 50 | 0.50 | 0.50 | 0.50 | 0. 510 | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 | - 28 |
| DISIANCE FISHED | 1.90 | 2.00 | 1.80 | 2.00 | 1.10 | 1.70 | 1.70 | 1.60 | 1.70 | 0.50 1.70 | 0.50 1.70 |
| PERFORMANCE/ GEAR | $0 / 20$ | $4 / 20$ | $0 / 20$ | 0 - 20 | - / 20 | $0 / 20$ | - /20 | 0.20 | - / 20 | $0 / 20$ | $0 / 20$ |
| POLLOCK | 329.4 | 9.8 | 54.1 | 24.6 | 0.4 | 631.3 | 309.9 | 3.1 | 26.0 | 3.1 | 0.0 |
| PAC COD | 2.5 | 1. 2 | 4.0 | 14.1 | 1.0 | 10.3 | 9.8 | 12.3 | 75.1 | 4.1 | 0.0 |
| PAC DC PEACH | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 0.0 |
| DTHER ACKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 5.4 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.1 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
| atka hackerel | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 3.7 | 21.6 | 21.5 | 81.6 | 25.9 | 13.3 | 3.5 | 79.2 | 202.2 | 202.8 | 127.1 |
| EELPOUTS | 17.6 | 35.9 | 19.3 | 6.4 | 9.6 | 17.4 | 17.9 | 9.9 | 18.8 | 13.7 | 3.6 |
| OTHER FNDFISH | 24.6 | 7. 3 | 0.7 | 2.7 | 0.9 | 0.2 | 4.5 | 4.3 | 5.8 | 17.7 |  |
| TOT KOUNDFISH | 383.3 | 75.6 | 99.6 | 129.7 | 37.9 | 672.6 | 345.6 | 109.5 | 328.4 | 241.4 |  |
| YELLOW SOLE | 1.6 | 480.6 | 328.9 | 194.9 | 222.5 | 73.3 | 12. 6 | 1060.1 | 2230.3 | 1827.1 | 1490.3 ل |
| RDCN SOLE | 0.0 | 0.0 | 3.4 | 6.7 | 2.7 | 5.2 | 0.6 | 0.0 | 31.8 | 6.2 | 1490.3 7.2 |
| Flathead sole | 30.6 | 2.6 | 2.4 | 5.3 | 4.1 | 13.6 | 17.2 | 0.4 | 0.9 | 1.8 | 0.0 |
| ALASKA PLAICE | 2.6 | 92.6 | 43.0 | 22.7 | 113.4 | 25.3 | 6.2 | 806.8 | 66.5 | 153.3 | 136.8 |
| GREENLAND TET | 7.7 | 3. 8 | 9.8 | 20.8 | 6.5 | 8.9 | 15.1 | 16.t | 28.9 | 14.2 | 2.2 |
| ARRONTOOTH FL | 9.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HALIBUT | 0.8 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| OTHER FLTFISH | 0.3 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 0 |
| TOT FLatFish | 53.0 | 567.8 | 3e7.5 | 253.4 | 349.2 | 126.8 | 54.4 | 1e85.9 | 2358.3 | 2002.5 | $\begin{array}{r} 0.0 \\ \& 63 E .5 \end{array}$ |
| SKATES | 0.0 | 6. 5 | 2. 2 | 0.0 | 0.0 | 2. 6 | 0.0 | 4.9 | 0.0 | 1.8 |  |
| TOT ELASMO日RH | 0.0 | 6.5 | 2.2 | 0.0 | 0.0 | 2.6 | 0.0 | 4.9 | 0.0 | 1.0 | $0=0$ |
| RĖD King Cras | 15.0 | 5. 2 | 1.8 | 0.0 | 0.0 | 39.0 | 7.3 | 0.0 | 0.0 |  |  |
| blue king crab | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 |
| TANNER. BAIROI | 6.8 | 5.5 | 2.4 | 2.3 | 4.5 | 6.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANSER, OPILID | 69.3 | 159.4 | 139.3 | 165.7 | 379.4 | 22.8 | 13.2 | 0.7 | 0.0 | 0.2 | 0.5 |
| TANNER, HYBRID | 5.5 | 0.0 | 2.4 | 165. | 379.4 | 22.2 | 145.6 | 201.6 | 75.9 | 154.2 | 70.8 |
| DIHER CRAB | 2.3 | 51.9 | 42.0 | 12.6 | 10.8 | 16.0 | 0.0 | 32.7 | 2.0 | 5.9 | 9.1 |
| SNAILS | 0.3 | 27.1 | 44.9 | 12.6 | 10.3 | 16.6 | 7.0 | 18.0 | 28.9 | 68.0 | 409 |
| SHRIMP. | 1.0 | 0.0 | 0.7 | 0.0 | 0.0 | 4.0 | 6.1 | 32.7 | 12.6 | 17.7 | 79.2 |
| STARFISH | 73.2 | 30.8 | 52.7 | 28.5 | 2 2. 6 | 37.4 | 0.0 | 0.1 | 0.0 | 0.0 | C. 0 |
| Souio | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37. | 25.6 | 20.4 | 53.5 | 118.7 | 25.2 |
| OCTOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INVERTS | 0.4 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| TOTAL INVERTS | 173.7 | 280. 2 | 285.7 | 219.8 | 0.8 | 2.5 | 0.0 | 0.0 | 0.0 | 0,0 | 662.3 |
|  |  |  |  |  | 430.2 | 165.5 | 194.8 | 314.0 | 171.9 | 364.8 | 854.8 |
| OTHER | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CAICH | 610.1 | 950.1 | 775.0 | 602.9 | 817.3 | 967.5 | 594.8 | 2314.3 | 2858.6 | 2610.5 | 2632.7 |


| HAUL ${ }^{\text {c }}$ | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONTH/DAY/YEAR | 1/13118 | 7/14/78 | 7/14/78 | 7/14/78 | 7/14/78 | 7/14/78 | 1/15/78 | 7/15/7e | 7/15/78 | 7/15/7e | 7/15/78 |
| LAIITUDE STAFT | 5739.9 | 5740.0 | 57 38.0 | 57 37.9 | 57 38.0 | 5759.0 | 580.0 | 5759.0 | 580.0 | 581.0 | 580.0 |
| LOAGITUDE START | 164. 0.0 | 160520 | 16015.0 | 15937.0 | 1591.9 | 15857.0 | 15936.0 | 16011.0 | 16050.0 | 16129.0 | 1626.0 |
| LATITUDE END | 5739.0 | 5740.8 | 5739.4 | 5738.8 | 5740.2 | 581.9 | 58 0.5 | 580.5 | 580.5 | 581.2 | 580.6 |
| LONGITUCE END | 16357.6 | 16049.6 | 16013.8 | 15936.8 | 1590.1 | 15857.6 | 15938.8 | 16015.3 | 16054.8 | 16132.8 | 1628.4 |
| LORAN START | 33674.10 | 33187.20 | 33119.00 | 33042.60 | 32964.00 | 12829.20 | 32903.90 | $32 \times 81.90$ | 33058.70 | 33139.50 | 33233.70 |
| LORAN START | 47651.90 | 46401.50 | 46155.20 | 45902.70 | 45673.20 | 45643.00 | 45896.00 | 46130.30 | 46385.90 | 46640.10 | 468E4.20 |
| LOFAN END | 33666.20 | 33180.70 | 33109.20 | 33033.40 | 32950.00 | 32817.30 | 32907.30 | 32983.20 | 33069.00 | 33145.40 | 3 3237.40 |
| LORAN END | 47630.70 | 46382.30 | 46144.90 | 45898.90 | 45656.20 | 45644.00 | 45913.30 | 46152.70 | 46412.10 | 46660.00 | 46894.80 |
| GEAR DEPTH | 27 | 30 | 29 | 26 | 24 | 20 | 23 | 27 | 23 | 27 | 21 |
| DURATIDN IN HOURS DISTANCE FISHED | 0.50 1.70 | 0.50 1.60 | 0.50 1.40 | 0.50 | $0.50$ | $0.50$ | 0.50 | 0.50 | 0.50 2.00 | 0.50 | 0.50 |
| PERFORHANCE / GEAR | - 120 | 0120 | $0 / 20$ | 0120 | 0120 | - 120 | 0 - 20 | - 120 | $0 / 20$ | 0/20 | 0 - 20 |
| POLLOCK | 0.3 | 13.0 | 1.5 | 0.5 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 |
| PAC COD | 9.6 | 29.0 | 37.3 | 0.0 | 4.1 | 0.0 | 51.2 | 10.7 | 0.5 | 123.8 | 7.2 |
| PaC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | D. 0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | c. 0 |
| PAC HERRING | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 |
| ATKA HACKEREL | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 159.6 | 67. 2 | 74.0 | 43.1 | 3.6 | 0.0 | 20.0 | 26.5 | 1.9 .6 | 222.5 | 732.3 |
| EELPOUTS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RNDFISH | 13.4 | 21.9 | 14.8 | 8.6 | 1.6 | 0.0 | 5.0 | 14.1 | 15.5 | 54.5 | 23.8 |
| TOT ROUNDFISH | 182.9 | 131.1 | 128.4 | 52.1 | 12.4 | 0.0 | 76.2 | 52.3 | 35.6 | 401.7 | 753.3 |
| YELLOH SOLE | 1232.1 | 1083.3 | 554.7 | 430.5 | 49.0 | 0.0 | 1683.6 | 1011.5 | 1367.0 | 695.4 | $996.7 \infty$ |
| ROCK SOLE | 13.3 | 62. 6 | 3C1.0 | 71.2 | 9.5 | 0.0 | 13.1 | 145.1 | 238.5 | 48.0 | 116.5 |
| FLATHEAD SOLE | 0.0 | 6.8 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ALASKA PLAICE | 45.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 8.3 | 6.3 |
| GREENLAND TEI | 4.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ARROWTOOTH FL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PaC haligut | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
| OTHER FLTFISN | 1.5 | 8.4 | 23.3 | 8.6 | 0.1 | 0.0 | 33.6 | 13.6 | 14.9 | 7.7 | 23.3 |
| TOT FLAIFISH | 1297.1 | 1164.2 | 8E3.2 | 510.3 | 58.6 | 0.0 | 1730.3 | 1170.9 | 1620.5 | 759.6 | 1142.8 |
| SKA IES | 10.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT ELASMOBRH | 10.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| RED KING CRAB | 37.2 | 65.8 | 39.7 | 63.3 | 2.7 | 0.0 | 2.3 | 139.7 | 101.6 | 85.0 | 38.6 |
| GLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER. BAIRDI | 0.3 | 2.7 | 4.7 | 2.0 | 0.2 | 0.0 | 0.0 | 0.7 | 0.0 | 0.7 | 1.4 |
| TANMER, OPILIO | 42.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANAER, HYERID | 3.6 | D. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| OTHER CRAB | 16.6 | 26. 7 | 4.8 | 2.9 | 0.6 | 0.0 | 2.9 | 0.9 | 2.4 | 34.4 | 4.9 |
| SHAILS | 271.8 | 14.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 3.2 | 7.6 | 0.0 |
| SHRIMP | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| STARFISH | 28.1 | 18. 3 | 48.2 | 145.6 | 71.7 | 37.6 | 19.1 | 03.9 | 11.0 | 55.6 | 136.3 |
| SQUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | c. 0 |
| OCTOPUS' | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INYERTS | 382.6 | 0. 0 | 24.1 | 13.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 77.7 | 0.0 |
| TOIAL INVERTS | 782.9 | 127.6 | 121.5 | 227.0 | 76.2 | 37.6 | 24.2 | 225.2 | 118.1 | 261.3 | 181.0 |
| DTMER | 0.0 | 0. 0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Jotal catch | 2273.3 | 1422.9 | 1133.1 | 789.4 | 147.3 | 37.6 | 1830.7 | 1447.4 | 1774.2 | 1422.6 | 2017.1 |

Table A-lb .--Continued.

| haul | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 65 | 87 | 68 | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| month/oayiyear | 7/16/78 | 7/16/78 | 7/16/78 | 7/16/78 | 7/16/78 | 1/17/78 | 7/17/78 | 7/18/78 | 7/18/78 | 7/18/70 | 7/18/78 |
| Latirude start | 5759.0 | 580.0 | 580.0 | 58 0.0 | 581.0 | 5750 | 570.0 | 5642.0 | 56 40.0 | 5639.0 | 5659.0 |
| LDNGITUDE START | 16244.0 | 26321.0 | 1640.9 | 16437.0 | 16514.0 | 16629.0 | 16550.0 | 16550.0 | 16626.0 | 1672.9 | 1674.0 |
| LAEITUDE END | 5759.5 | 58 0. 6 | 583.5 | 58.1 .7 | 5759.8 | 571.3 | 56 58.5 | 5641.2 | 5639.7 | 56 4 3.4 | 57 1.1 |
| LONGITUDE ENO | 16247.8 | 16325.3 | 1645.0 | 16439.8 | 16515.5 | 16628.2 | 16552.0 | 16550.6 | 16629.8 | 167 4.8 | 1675.0 |
| LORAN START | 33333.70 | 33419.30 | 33524.50 | 33621.50 | 33719.40 | 34343.30 | 34247.20 | 36337.50 | 34461.90 | 34589.00 | 34496.80 |
| LOAAN START | 47135.00 | 47372.40 | 47632.50 | 47865.00 | 48103.40 | 48671.00 | 4E416.50 | 48414.20 | 48655.00 | 48903.70 | 48911.70 |
| LORAN END | 33341.30 | 31429.30 | 33512.70 | 33620.90 | 33736.20 | 34362.90 | 34260.70 | 34346.00 | 34478.20 | 34576.10 | 34487.10 |
| LDAAM END | 47153.00 | 47397.50 | 47652.20 | 47880.20 | 48114.10 | 48666.89 | 48424.40 | 48416.40 | 48677.10 | 48911.70 | 48912.70 |
| GEAR DEPIH | 21 | 22 | 24 | 24 | . 26 | 39 | 38 | 42 | 45 | 51 | 40 |
| DURATIDN IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISAED | 1.60 | 2.00 | 2.00 | 1.70 | 1.80 | 2.00 | 1.90 | 1.50 | 2.00 | 2. 00 | 1.90 |
| PERFDRHANCE / GEAR | 0120 | $0 / 20$ | 0 120 | 0 \% 20 | $0 / 20$ | 0 120 | 0.20 | $0 / 20$ | 0120 | $0 / 20$ | $0 / 20$ |
| POLLOCK | 0.7 | 2.0 | 35.8 | 6.8 | 11.8 | 57.2 | 60.3 | 100.2 | 176.9 | 148.1 | 197.3 |
| PAC COD | 31.3 | 163.4 | 188.2 | 28.9 | 9.8 | 62.6 | 2.6 | 9.5 | 12.7 | 5.0 | 29.9 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DTHER RCKFISH | 0.10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 |
| ATKA Mackerel | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 60.1 | 61.2 | 74.1 | 56.4 | 40.3 | , 25.4 | 25.4 | 21.3 | 12.8 | 15.0 | E. 2 |
| EELPOUTS | 0.0 | 4. 0 | 0.0 | 0.0 | 0.0 | 10.9 | 18.1 | 2.9' | 7.3 | 51.3 | 8.2 |
| DTHER RNDFISH | 9.9 | 5.9 | S. 8 | 9.7 | 7.0 | 1.4 | 0.3 | 0.1 | 0.2 | 0.6 | 1.9 |
| TOT ROUNDFISH | 102:0 | 232.4 | 304.0 | 101.8 | 69.0 | 158.1 | 105.8 | 134.2 | 209.9 | 219.9 | 246.4 |
| TELLOW SOLE | 1142.8 | 1248. 5 | 194.1 | 296.6 | 573.6 | 387.8 | 194.6 | 92.5 | 54.9 | 142.4 | $101.0 \times$ |
| ROCK SOLE | 85.8 | 19.5 | 30.4 | 39.5 | 38.4 | 15.0 | 11.8 | 13.6 | 12.7 | 6.8 | 3.6 |
| FLATHEAD SOLE | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 3.6 | 2.7 | 1.4 | 12.7 | 7.3 | 94.3 |
| ALASKA PLAICE | 25.9 | 31.7 | 12.1 | 13.5 | 70.9 | 16.6 | 130.2 | 4.8 | 15.9 | 1.4 | 18.1 |
| GREENLAND TBI | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 29.5 | 3.2 | 15.9 | 6.8 | 4.5 |
| AREOHTOOTH FL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| PaC Halibut | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
| OTHER FLIFISH | 11.6 | 3.7 | 1.8 | 3.1 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 |
| IOT FLATFISH | 1266.1 | 1303.4 | 239.0 | 352.6 | 685.3 | 430.0 | 368.8 | 115.4 | 112.0 | 164.7 | 224.4 |
| SKATES | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 7.3 | 3.6 | 0.0 | 2.0 | 0.0 | 1.4 |
| TIT ELASMOARH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.3 | 3.6 | 0.0 | 2.0 | 0.0 | 1.4 |
| RFD KING CRAB | 12.5 | 15.9 | 3.2 | 2.7 | 0.0 | 0.0 | 1.6 | 6.4 | 2.3 | 0.0 | 0.0 |
| BlUE KING CRAB | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| IANMER. BAIRDI | 0.0 | 0.0 | 0.1 | 0.9 | 0.0 | 1.8 | 4.5 | 4.5 | 3.4 | 4.1 | 0.5 |
| TANNER, UPILID | 0.0 | 0.0 | 0.0 | 0.0 | . 0.2 | 227.7 | 104.3 | 73.7 | 95.7 | 30.2 | 86.6 |
| TANNER, HYGRIO | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 32.7 | 2.7 | 0.3 | 1.8 | 2.5 | 0.3 |
| OTHER CRAB | 4.2 | 7.3 | 12.7 | 50.1 | 65.9 | R. 2 | 3.9 | 19.1 | 39.1 | 25.9 | 54.1 |
| SNAILS | 1.9 | 9.8 | 41.8 | 87.1 | 53.7 | 35.1 | 20.2 | 10.7 | 58.6 | 33.9 | 14.5 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| STARFISH | 58.6 | 287.8 | 85.3 | 119.4 | $52 . ?$ | 47.6 | 32.7 | 10.4 | 6.4 | 29.0 | 31.3 |
| SOUID | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OCTOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INVERTS | 0.0 | 0.0 | 0.0 | 0.0 | 173.5 | 24.9 | 19.1 | 2.8 | 0.0 | 5.4 | 0.0 |
| TOTAL INYERTS | 77.2 | 320.7 | 143.1 | 260.3 | 345.4 | 378.0 | 188.9 | 127.7 | 207.3 | 131.0 | 187.3 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| total catch | 1445.3 | 1656.5 | 686.1 | 714.7 | 1099.8 | 973.4 | 667.1 | 317.3 | 531.2 | 515.6 | 659.4 |

Table A-lb.--Continued.


Table A-lb.--Continued.

| HAUL* | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MONIH/DAY/YEAR | 1/22178 | 7/22178 | 7/22/78 | 7122178 | 7/22/78 | 7/23/78 | 7/23/18 | 7/23/7e | 7/23/78 | 7/23/18 | 1/24/78 |
| Latifude start | 5840.0 | 590.0 | 5920.0 | 5940.0 | $60 \quad 0.0$ | 6020.0 | 6020.0 | 6039.0 | 6040.0 | 610.0 | 6059.0 |
| LONGITUDE STAFT | 172400 | 1717.0 | 17111.0 | 17115.9 | 17286.9 | 17121.0 | 1722.9 | 1726.0 | 17123.9 | 17120.0 | 1729.9 |
| LATITUDE END | 56 41.6 | 59 1.8 | 59 22.0 | 59 42.0 | $60 \quad 2.9$ | 6020.4 | 6022.2 | 6039.9 | 6042.4 | 6059.4 | 6057.8 |
| LOMGITUCE END | 1715.6 | 1717.8 | 17111.7 | 17118.6 | 17118.5 | 17125.2 | 1723.2 | 172 2.3 | 17123.4 | 17133.5 | 17210.8 |
| LORAN START | 34030.60 | 33192.20 | 33555.00 | 33316.50 | 33075.20 | 32843.20 | 32861:10 | 32635.10 | 32607.50 | 32376.40 | 32405.00 |
| LORAN START | 18222.20 | 18149.70 | 18077.50 | 49385.90 | 17942.80 | 17875.40 | 17741-40 | 17690.00 | 17820.40 | 17761.30 | 17635.10 |
| LORAN END | 54017.60 | 33776.10 | 33535.30 | 33298.00 | 35050.00 | 32862.90 | 32838.90 | 32632.30 | 32581.60 | 32387.70 | 32429.40 |
| LORAN END | 18215.10 | 18144.80 | 18070.90 | 49381.60 | 17934.10 | 17666.90 | 17739.10 | 17702.50 | 17817.20 | 17747.60 | 17637.50 |
| GEAF OEPTH | 44 | 41 | 40 | 38 | 36 | 35 | 31 | 33 | 33 | 31 | 34 |
| DURATION IN H CURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.20 | 1.40 | 1.70 | 1.97 | 2.09 | 1.90 | 2.00 | 1.90 | 2.00 | 2.00 | 2.00 |
| PEAFJRHANCE / Gedr | $0 / 20$ | $0 / 20$ | $0 / 20$ | 0/20 | 0 /20 | 0120 | $0 / 20$ | $0 / 20$ | $0 / 20$ | $0 / 20$ | 0120 |
| POLLOCK | 1913.7 | 7.3 | 1.4 | 3.6 | 1.4 | 0.5 | 0.7 | 0.7 | 0.5 | 0.7 | 0.5 |
| PAC COD | 6.7 | 0.2 | 0.5 | 0.7 | 1.1 | 0.2 | 1.8 | 0.7 | 0.1 | 0.2 | 0.2 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHEK RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PaC herfing | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 |
| ATKA MACKEAEL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| SCULPINS | 50.3 | 4.5 | 1.4 | 5.2 | 4.6 | 3. 9 | 62.7 | 0.9 | 0.2 | 0.0 | 0.1 |
| EFLPOUTS | 24.6 | 5. 9 | 40.8 | 38.3 | 7.9 | 15.5 | 12.8 | 343.4 | 18.2 | 17.9 | 5.9 |
| OTHER RNOFISH | 0.0 | 7. 0 | 7.8 | 3.6 | 13.0 | 4.6 | 19.8 | 6.6 | 1.2 | 2.7 | 0.5 |
| TOI ROUNDFISH | 1995.3 | 24.9 | 51.8 | 51.5 | 28.1 | 24.7 | 97.9 | 352.2 | 20.2 | 21.6 | 7.1 |
| rellon sole | 14.5 | 5.7 | 6.6 | 0.2 | 0.5 | 0.2 | 0.0 | 0.1 | 0.2 | 0.0 | $0.0 \stackrel{\sim}{\omega}$ |
| ROCK SDLE | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\bigcirc 0.0$ | 0.5 |
| Flajhead sole | 4.5 | 0.5 | 1.4 | 0.9 | 2.3 | 0.2 | 0.1 | 0.9 | 0.1 | 0.1 | 0.9 |
| ALASKA PLAICE | 4.5 | 0.5 | 54.0 | 18.1 | 8. 6 | 2. 3 | 2.0 | 19.1 | 1.6 | 0.0 | 0.0 |
| GREENLAND JBI | 14.5 | 12.7 | 12.2 | 23.4 | 9.5 | 5.9 | 1.8 | 3.2 | 2.7 | 0.5 | 1.4 |
| ARROWTOOTH FL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| PAC HALIBUT | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER FLTFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT FLAJFISH | 38.0 | 20.6 | 74.2 | 42.6 | 20.9 | 8. 6 | 4.0 | 23.2 | 4.6 | 0.6 | 2.7 |
| SKATES | 8.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT ELASHOBRH | 8.4 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| RED KING CRAB | 0.0 | ก. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 . | 0.0 | 0.0 | 0.0 | C. 0 |
| BLUE KING CRAB | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER, BAIROI | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER. OPILIO | 55.3 | 42.9 | 32.4 | 75.7 | 68.5 | 9.3 | 61.7 | 29.5 | 13.6 | 29.9 | 15.9 |
| IANNER, HYERID | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER CRAB | 2.8 | 1.1 | 0.0 | 0.9 | 2.0 | 0.9 | 130.6 | 2.0 | 1.4 | 0.0 | 0.9 |
| SNAILS | 22.0 | 2.9 | 4.5 | 1.6 | 3.7 | 6.2 | 33.2 | 0.5 | 0.4 | 0.7 | 0.4 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| STARFISH | 21.2 | 13.4 | 8.2 | 5.7 | 4.5 | 1.1 | 112.3 | 16.8 | 0.4 | 10.0 | 9.1 |
| SQUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OCTOPUS | 0.0 | 0.0 | 0.0 | $\therefore 0.0$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER INVERTS | 0.0 | 0.7 | 2.5 | 0.1 | 0.0 | 0.2 | 37.2 | 1.0 | 1.1 | 2.9 | 0.2 |
| TOIAL INVERTS | 102.0 | 61.3 | 47.6 | 84.1 | 78.8 | 17.8 | 380.5 | 49.8 | 24.9 | 43.5 | 2E.6 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 2143.8 | 106.9 | 173.5 | 178.2 | 127.8 | 51.1 | 482.4 | 425.2 | 49.8 | 65.7 | 36.4 |

Table A-lb.--Continued.


Table A-lb.--Continued.


Table A-lb.--Continued.

| HAUL MONTH/DAY/YEAR | $\text { ef } \begin{array}{r} 137 \\ 2 / 78 \end{array}$ | $\begin{array}{r} 138 \\ 8 / 2 / 78 \end{array}$ |  | $145$ | 862 | 1144 | 145 | 146 | 147 | 148 | 149 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LATITUDE START | 580.0 | $\begin{array}{ll}88 & 0.0\end{array}$ | 87 2778 <br> 57  <br> 180  | 8/ $2 / 78$ | 8/3/78 | $8 / 3 / 78$ | 814178 | 8/ 4176 | 8/ 4178 | $8 / 4 / 7 \mathrm{e}$ | 8/5/78 |
| LONGITUCE START | 17213.0 | 17251.0 | 17247.9 | 5719.0 172 43.0 | $\begin{array}{r}5719.0 \\ 173 \\ \hline 180\end{array}$ | 57 1739.0 | 5820.0 | 5820.0 | 58 40.0 | 5840.0 | 58 39.0 |
| LAIIIUDE END | 580.8 | 57 50. 5 | 57 38.0 | 57 20.7 | 17320.0 | 17326.0 | 17332.9 | 17419.0 | 17415.9 | 17337.0 | 1730.0 |
| LONGITUDE ENJ | $172 \quad 17.1$ | 17251.9 | 17248.5 | 17220.7 | 5720.4 | 581.8 | 5821.8 | 5822.1 | 5624.5 | 5840.5 | 58 38.3 |
| LORAN STARI | 34414.00 | 34348.40 | 34529.70 | 174685.90 | 173623.9 | 173290 | 17333.7 | 17419.5 | 17330.9 | 17334.2 | 1730.9 |
| LORAN STARJ | 17992.00 | 17778.90 | 17795.40 | 17801.70 | 34601.10 | 34285.30 | 34101.30 | 34027.00 | 34859.70 | 33908.20 | 33955.60 |
| LORAN END | 14405.00 | 34365.10 | 34544.20 | 17801.70 346720 | 17567.10 | 17561.20 | 17534.70 | 17278.80 | 17304.50 | 17506.30 | 17700.10 |
| LORAN END | 17974.20 | 17776.70 | 17793.0n | 34672.30 17778.79 | 34590.60 17544.90 | 34269.60 17560.70 | 34085.10 17535.20 | 34011.30 | 34860.80 | 33909.10 | 33971.30 |
| GEAR DEPTH | 57 | 58 | 1775 | 17770.79 65 | 17544.90 | 17560.70 | 17535.20 | 17279.30 | 17321.90 | 17524.70 | 17697.80 |
| DURAIION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | . 65 | 63 | 95 | 85 | 68 | 61 |
| DISTANCE FISHED | 1.70 | 2.10 | 1.90 | 2.00 | 2.09 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Performance / Gear | 0120 | $0 / 20$ | $0 \% 20$ | 0120 | $0 \% 20$ | $\begin{array}{r}1.80 \\ \hline 20\end{array}$ | 1.80 | 1.80 | 1.50 | 1.90 | 1.70 |
| POLLOCK | 464.1 | 537.2 | 241.7 | 1430.0 | 1804.3 | 257.4 |  |  |  |  |  |
| PAC CDD | 1.6 | 6.1 | 3.6 | 14300 | , | 258.4 | 1261.9 | 371.0 | 340.6 | 579.1 | 186.9 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100 | 24.6 | 22.9 | 15.0 | 8.8 | 9.2 |
| OTHER RCKFISH | 0.0 . | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pac herring | 0.0 | 0.0 | 2.4 | 0.0 | 0.1 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | C. 0 |
| ATMA HACKEREL | 0.0 | 0.0 | 0.2 | 0.0 | 0. 0 | 2.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 8.1 | 15.2 | 12.0 | 0.4 | 0.6 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| EELPOUTS | 98.0 | 41.3 | 17.9 | 6.8 | 55.8 |  | 6.5 | 2.2 | 13.7 | 4.2 | 6.3 |
| OTHER RNDFISH | 2.5 | 2. 0 | 13.1 | 0.5 | 55.0 0.0 | 6. 4 | 5.9 | 1.6 | 16.6 | 26.8 | 40.3 |
| TOT ROUNDFISH | 574.2 | 601.7 | 281.0 | 1447.7 | 1860.7 | 292.4 | 1300.9 | 407.8 | 3.9 389.8 | 1.3 620.8 | 24.4.8 |
| YELLOH SOLE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| ROCK SOLE | 0.0 | 0. 4 | 0.0 | 0.0 | 2.3 | 0.7 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| FLATHEAD SOLE | 0.1 | 0.1 | 2.7 | 0.0 | 0.0 | 4.7 3.6 | 1.9 8.5 | 0.3 | 7.9 | 0.0 | 0.0 |
| ALASKA PLAECE | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 0.0 | 0.5 0.0 | 2.5 | 8.6 | 0.1 | C. 0 |
| GREENLAND TET | 20.6 | 29.5 | 18.3 | 13.0 | 0.0 | 21.3 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| ARADMTDOTH FL | 0.0 | 2. 0 | 1.5 | 9.5 |  | 21.3 | 19.9 | 17.5 | 0.0 | 3.7 | 30.4 |
| Pac halibut. | 0.0 | 0.0 | 0.0 | 1.8 | C. 3 | 21.8 0.0 | 2.0 | 4.1 | 16.3 | 0.0 | 0.0 |
| OIHER FLTFISH | 0.0 | 0.0 | 0.9 | 0.0 |  | 0.1 | 0. | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT FLATFISH | 22.3 | 32,0 | 22.5 | 24.4 | 10.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SKATES | 1.8 | 0.0 | 0.0 | 9.1 | 0.0 |  |  |  |  |  |  |
| TOT ELASMOARH | 1.8 | 0.0 | 0.0 | 9.1 | 0.0 | 1.6 1.6 | 0.0 0.0 | 0.0 0.0 | 2.3 2.3 | 15.7 15.7 | 23.6 |
| RED KING CRAB | 0.0 | 0.0 | 0.4 | 0.0 | 0.4 | 0.0 | 0.0 |  |  |  |  |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| TAKKER. BAIRDI | 0.2 | 13.2 | 7.7 | 3.9 | 76.5 | 5.9 | 4.2 | 12.0 | 0.0 | 0.0 | 0.0 |
| TAMAER, OPILIO | 18.1 | 25. 4 | 14.3 | 12.5 | 17.2 | 9.9 | 4.2 | 12.4 | 30.2 | 7.7 | 1.6 |
| TAMNER, HYBRID | 0.7 | 0.0 | 0.1 | 2.0 | 17.0 | 9. 0 | 4.2 | 2.6 0.1 | 33.1 0.0 | 16.1 | 26.0 |
| OTHER CRAB | 22.6 | 16. 3 | 4.6 | 0.0 | 19.1 | 4.8 | 1.2 | 0. 16 | 1.1 | 12.0 | 0.0 |
| SHAILS | 34.5 | 26. 8 | 5.4 | 0.2 | 6.3 | 2.0 | 1.2 0.6 | 0.6 0.1 | 1.7 0.9 | 12.0 | 12.8 |
| SHRIMP | 28.1 | 6. 4 | 16.7 | 0.3 | 0.2 | 0.1 | 0.6 | 0.1 | 0.9 | 12.2 | 33.5 |
| STARFISH | 0.0 | 8.5 | 0.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0. 0 | 0.1 | 0.5 | 28.2 |
| SOUID | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.2 | 1.2 | 2. e |
| OCTCPUS | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 | 0.1 | 0.1 | 0.0 |
| OTHER INVERTS | 2.6 | 1. 3 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL INYERTS | 108.1 | 97.9 | 49. 2 | 16.8 | 119.4 | 22.5 | 0.0 | 0.7 | 0.3 | 1.4 | 0.6 |
|  |  |  |  |  |  | 22.5 | 10.2 | 19.5 | 66.7 | 51.1 | 103.5 |
| DJHER | 0.0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| dotal catch | 706.4 | 731.7 | 352.7 | 1498.0 | 1990.7 | 363.4 | 1343.5 | 451.7 | 491.6 | 691.4 | 402.0 |

Table A-lb.--Continued.


Table A-lb.--Continued.

| HAUL MONJH/DAY/YEAG | $\begin{array}{r} 164 \\ 8 / 888 \end{array}$ | $8 / 8178$ | $\begin{array}{r} 166 \\ 8 / 8 / 78 \end{array}$ | $\begin{array}{r} 167 \\ 6 / 78 \end{array}$ | $\begin{array}{r} 168 \\ 0 / 8178 \end{array}$ | $\begin{array}{r} 169 \\ 8 / 9 / 78 \end{array}$ | $\begin{array}{r} 170 \\ 9 / 9778 \end{array}$ | $8 / 9171$ | $\begin{array}{r} 172 \\ 9 / 78 \end{array}$ | $\begin{array}{r} 173 \\ 9 / 78 \end{array}$ | $\begin{array}{r} 174 \\ 0 / 10 / 78 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LatITUDE START LONGITUDE START | $\begin{array}{r}58 \\ 176 \\ \hline 1200\end{array}$ | 58 470.0 | 5980.0 | 590.0 | 5900 | 5919.0 | 5919.0 | 5919.0 | 5919.0 | 5920.0 | 5919.0 |
| LATITUDE END | 176120 | 176 58 | 17657.0 | 171 36.0 | 17815.0 | 17726.0 | 1172.9 | 17623.0 | 17545.0 | 1755.0 | 17426.0 |
| LONGITUDE END | 17615.5 | 17649.6 | $\begin{array}{rr}59 & 0.4 \\ 177 & 0.3\end{array}$ | 590.2 | 597.4 | 5919.6 | 59119.7 | 5919.7 | 5919.7 | 5921.7 | 59.19 .1 |
| LDRAN START | 33696.70 | 33847.40 | 33484.60 | 178580 | 17817.3 | 17723.5 | 1770.5 | 17620.6 | 17541.7 | 175 5.6 | 17423.9 |
| LORAN STARJ | 16670.00 | 16467.70 | 16465.00 | 33438.50 | 33352.80 | 33297.80 | 33320.79 | 33361.90 | 33398.40 | 33434.30 | 33474.70 |
| LORAN END | 33693.10 | 33632.40 | 33479.10 | 3 3433.90 | 16060.60 | 16347.80 | 16463.10 | 16666.40 | 16856.30 | 17050.60 | 17241.30 |
| LORAN END | 16654.00 | 16471.90 | 16449.20 | 16246.00 | 33338.50 | 33303.10 | 33325.40 | 33365.50 | 33404.10 | 33420.30 | 33482.00 |
| GEAF DEPIH | 166546 | 164713 | 16449.20 | 1.6246 .00 | 16068. 20 | 16363.40 | 16478.70 | 16670.80 | 16872.10 | 17052.70 | 17254.30 |
| DURATION IN HOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | -. 50 | 81 0.50 | 74 | 73 | 72 | 65 |
| DISTANCE FISHEO | 1.60 | 2.00 | 1.60 | 1.70 | 2.00 |  | . 50 | 0.5 | 0.50 | 0.50 | 0.50 |
| PERFORHANCE/GEAR | $0 / 20$ | $0 \% 20$ | $0 \% 20$ | $0 \% 20$ | $01 / 20$ | -120 | (1.60 | 01.30 | 1.70 $0 \quad 20$ | 1.60 0.20 | $\begin{array}{r} 1.50 \\ 0 \% \\ 0 \end{array}$ |
| POLLOCK | 598.2 | 107.9 | 156.7 | 1860.5 | 150.5 | 343.8 | 206.3 | 88.7 | 183.9 | 479.1 | 1547.6 |
| PAC COD | 30.3 | 6.1 | 46.4 | 0.4 | 8.1 | 5.3 | 0.0 | 0.0 | 0.0 | 2.6 | 5.4 |
| PAC OC PERCH | 0.0 | 0. 0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 0.0 | 5.4 |
| OTHER RCKFISH | 0.7 | D. 0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| SABLEFISH | C. 0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HERRIMG | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| ATKA MACKEREL | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 11.8 | 70.1 | 5.9 | 4.4 | 4.4 | 4.5 | 2.5 | 2.9 | 19.8 | 6.1 | 2.3 |
| EELPDUTS | 35.6 | 7.6 | 35.7 | 0.2 | 5.3 | 78.2 | 44.1 | 49.0 | 126.0 | 55.1 | 32.4 |
| OTHER RNDFISH | 3.0 | 0. 2 | 1. 3 | 0.0 | 3.9 | 1.4 | 2.5 | 0.0 | 126.8 | 5.2 | 32.3 |
| TOI RDUNDFISH | 678.8 | 192.1 | 246.3 | 1865.5 | 172.2 | 433.3 | 255.7 | 140.6 | 330.5 | 544.4 | 1567.9 |
| YELLOH SOLE | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| ROCK SOLE | 1.5 | 0.2 | 0.5 | 0.9 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Flatheac sole | 9.1 | 4.4 | 7.7 | 2.6 | 46.5 | 7.6 | 7.0 | 2.0 | 4.5 | 0.6 | 0.0 |
| alaska plaice | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | C. 0 |
| GREENLANO TET | 0. 0 | 1. 8 | 5.6 | 3.7 | 0.1 | 0.2 | 8.7 | 5.2 | 9.9 | 9.2 | 49.6 |
| ARROWTOOTH FL | 9.8 | 6.4 | 0.0 | 5.2 | 2.8 | 4.3 | 0.2 | 0.2 | 0.5 | 0.5 | 4.6 $C .0$ |
| PAC HALIBUX | 1.6 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0. 0 |
| OTHER FLTFISH | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.0 |
| TOT FLAIfISH | 30.8 | 12.8 | 13.9 | 12.4 | 56.0 | 12.1 | 15.9 | 7.5 | 14.9 | 10.5 | 49.6 |
| SKATES | 7.7 | 21.5 | 8.8 |  |  |  |  |  |  |  |  |
| TOT ELASMOBRH | 7.7 | 21.5 | 8.8 | 15.7 | 6.1 | 1.1 | 4.0 | 11.3 | 0.8 0.8 | 9.3 9.3 | 15.1 15.1 |
| REO KING CRAD | 0.0 | 0.0 | 0.0 | 0.0 | 0.10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| BLUE KING CRAB | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANAER, BAIRDI | 83.4 | 11.0 | 1.8 | 4. 8 | 18.6 | 3.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANKER, OPILIO | 113.6 | 17.1 | 12.5 | 10.7 | 34.0 | 17.2 | 54.2 | 23.1 | 11.0 | 5.0 | 4.9 |
| TANNER HYERID | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 11.0 | 5.0 0.0 | 4.9 |
| OTHER CAAB | 9.5 | 0.7 | 3.2 | 1.1 | 3.5 | 3.4 | 4.9 | 0.9 | 0.0 | 1.8 | 2.6 |
| SNAILS | 3.3 | 0.9 | 4.8 | 0.2 | 2.0 | 5.2 | 7.3 | 15.8 | 22.0 | 20.6 | 7.7 |
| SHRIMP | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.2 | 0.2 | 1.2 | 15.1 | 11.3 | 5.1 |
| STAPFISH | 0.3 | 0.1 | 0.5 | 0.0 | 0.1 | 0.1 | 2.6 | 46.6 | 71.7 | 4.5 | 0.0 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.6 | 24.0 | 4.5 | 0.1 | 0.1 |  | 0.0 | $0 \cdot 9$ |
| OCIOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 17.1 | 0.1 | 0.0 | 0.0 |
| OTHER ISVERTS | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 17.8 0.2 | 4.3 | 0.0 | 3.3 |
| TOTAL INYERTS | 210.2 | 29.8 | 23.0 | 17.4 | 82.5 | 34.1 | 69.4 | 105.8 | 125.8 | 0.7 44.0 | 23.9 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| IOTAL CATCH | 927.5 | 256. 2 | 292.0 | 2911.1 | 316.9 | 480.6 | 345.0 | 265.2 | 471.8 | 608.2 | 167 6. 6 |

Table A-lb.--Continued.


Table A-1b.--Continued.

| haUl MONTH/DAY/YEAR | $\begin{array}{r} 186 \\ 6 / 12178 \end{array}$ | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 196 | 197 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAIITUDE START | 5912778 | $8112 / 78$ | $8 / 12176$ | 2/12/78 | 8/13/78 | 2/13/76 | 6/13/78 | 8/13/78 | 8/14178 | 8/15/7e | 0/15/78 |
| LONGITUDE START | $\begin{array}{r}59 \\ 177 \\ \hline 71.0\end{array}$ | 59 1.77 59.0 | $\begin{array}{r}5959.0 \\ 177 \\ \hline 120\end{array}$ | $\begin{array}{r}59 \\ \hline 1769.0\end{array}$ | 5959.0 | 60.0 .0 | 600.0 | 600.0 | 5619.0 | 561.0 | 5540.0 |
| LAIITUDE END | 17751.0 5941.8 | 1.7754 .9 59 | 177 59 1780 | 17644.0 5959.5 | 17554.9 | 17515.0 | 17436.0 | 17356.0 | 17145.9 | 16957.0 | 16839.9 |
| LONGITUEE ENO | 17749.0 | 59 177 52.1 | $\begin{array}{r}59 \\ 177 \\ \hline 18.8\end{array}$ | $\begin{array}{r}59 \\ 1769.5 \\ \hline 72.6\end{array}$ | 5959.5 17552.6 | 60 0.0 | 60 0.2 | 5959.2 | 5620.2 | 561.7 | 5540.3 |
| LORAN START | 16266.00 | 16276.20 | 49745.10 | 1769206 | 17552.6 | 17513.1 | 17632.4 | 17355.2 | 17113.6 | 16954.9 | 16837.6 |
| LORAN START | 49827.00 | 49765.60 | 16472.20 | 16601.20 | 16823.9t | 17001.90 49657.60 | 17177.00 | 11343680 | 35106.80 | 35120.00 | 18310.00 |
| LOAAN END | 16273.70 | 16292.00 | 49745.50 | 33004.30 | 163034.70 | 49657.60 17014.10 | 49618.20 | 49569.90 | 18092.40 | 18284.00 | 49353.00 |
| LORAM END | 49822.00 | 49765.40 | 16486.50 | 16609.90 | 16836.60 | 49655.90 | 17192.50 | 17352.70 | 35110.40 | 35117.40 | 18315.70 |
| GEAR DEPTH | 92 | 49765.40 | 16406. 75 | 16609.97 | 16836.60 70 | 49655.90 63 | 49614.00 59 | $\begin{array}{r} 49574.00 \\ 53 \end{array}$ | 18111.70 78 | $\begin{array}{r} 18291.00 \\ 82 \end{array}$ | $49339.70$ |
| DURATIGN IH AOURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |  | 92 0.50 |
| DISTANCE FISHED | 1.50 0.20 | 1.90 0.20 | $\begin{array}{r}1.80 \\ \hline 120\end{array}$ | 1.10 | 1.50 | 1.40 | 2.80 | 0.50 1.60 | 0.50 1.80 | 0.50 1.50 | $\begin{aligned} & 0.50 \\ & 1.60 \end{aligned}$ |
| PERFORMANCE / GEAR | $0 / 20$ | 0.20 | 0120 | 0120 | $0 / 20$ | 0120 | $0 / 20$ | 0120 | 0 120 | 0120 | $0 / 20$ |
| POLLDCK | 193.0 | 203.9 | 1550.3 | 253.8 | 417.2 | 340.4 | 491.7 | 55. 3 |  |  |  |
| PAC COO | 4.4 | 0.0 | 0.0 | 0.0 | 2.7 | 78 | 41.0 5.0 | 55.3 1.1 | 61.8 3.1 | 220.4 179.0 | 236.0 43.3 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | S. 0 | 1.10 | 3.1 0.0 | 179.0 0.3 | 3.3 6.0 |
| DTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0.0 | 0.0 0.0 | 0. 0 | 0.0 |
| SABLEFISH | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HERRING ATKA HACKERFL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 11.4 | 0.0 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 |
| EELPOUIS | 98.7 | 24.6 | 3.4 19.2 | 4.6 | 7.0 | 2.4 | 6.5 | 2. 8 | 11.0 | 17.5 | 7.1 |
| OIHER RKDF15H | 1.6 | 1). 2 | 0.0 | 0.1 |  | 57.9 | 37.8 | 40.1 | 2.4 | 0.0 | 1.9 |
| TOT ROUNDFISH | 309.1 | 233.7 | 1572.9 | 347.6 | 501.8 | $\begin{array}{r} 0.1 \\ 408.1 \end{array}$ | $542.1$ | $\begin{array}{r} 2.0 \\ 101.4 \end{array}$ | 3.5 81.0 | $\begin{array}{r} 81.1 \\ 500.5 \end{array}$ | $\begin{array}{r} 11.9 \\ 300.2 \end{array}$ |
| YELLDM SOLE | 0.0 | D. 0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| ROCK SOLE | 0.0 | 0. 0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 0.0 | 0.8 0.8 | 0.0 | 0.0 2.7 | 0.0 0 |
| Flathead sole | 3.4 | 0.9 | 2.4 | 2.9 | 7.3 | 9.7 | 18.7 | 31.8 | 1.4 | 2.7 | 13.7 |
| ALASKA PLAICE | 0.0 | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 10.7 0.0 | 31.8 0.6 | 4.3 | 2.6 | 5.4 |
| GREENLAND TBT | 6.4 | 13.6 | 26.1 | 22.5 | 62.4 | 42.0 | 63.3 | 68.3 | 0.0 | 0.0 | 0.0 |
| ARROUTOOTH FL | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0. 0 |  |  | . 5.6 | 0.0 | 0.0 |
| PAC HALIBGJ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 15.9 | 7.1 | 7.7 |
| OTHER FLTEISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT FLAIFISH | 11.6 | 14.5 | 28.5 | 25.4 | 70.2 | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  |  |  |  |  |  | 82.0 | 101.3 | 22.2 | 12.4 | 26.9 |
| SKATES | 2.5 | 0.0 | 0.0 | 13.5 | 43.5 | 9.1 | E. 4 | 2.9 | 0.0 |  |  |
| TOT ELASHOERH | 2.5 | 0.9 | 0.0 | 13.5 | 43.5 | 9.1 | 8.4 | 2.9 | 0.0 | 0.0 0.0 | 4.9 |
| RED KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 3.9 | 0.0 6.3 | 0.0 0.0 | 0.0 | 0.0 |
| TANAER. BAIRDI | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  | 1. | 0.0 |
| TANNER. OPILIO | 47.2 | 11.1 | 5.9 | 3.4 | 4.8 | 36.1 | 9.1 | 7. 3 | 0.0 0.0 | 1.5 0.0 | 6.8 |
| TANNER, HYERID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  | 0 | 0.0 |
| OTHER CRAB | 0.0 | 0.5 | 0.0 | 0.1 | 0.5 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
| SNAILS | 19.4 | 1.0 | 4.1 | 10.7 | 40.1 | 12.5 | 2.7 | 0.2 | 0.0 | 50.4 | 9.3 |
| SHRIMP | 0.6 | 12.6 | 0.9 | 2.8 | 9.2 | 12.5 | 2.8 14.8 | 12.6 | 0.1 | 1. 4 | 2.2 |
| STARFISH | 6.4 | 15.9. | 20.2 | 111.1 | 66.4 | 10.2 | 0.9 |  | 6.1 | 0. 2 | 0.0 |
| SOUID | 0.8 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.1 | 64.4 | 12.7 | 40.4 |
| OCTOPUS | 2.5 | 0.0 | 0.0 | 3.4 | 28.6 | 0.0 | $0 \cdot 3$ | 0.0 | 0.0 | 2.6 | 0.1 |
| OTHER IXVERIS | 0.7 | 0.8 | 0.2 | 0.3 | 20.6 | 5.7 | 0.9 | 0.0 | 8.4 | 13.0 | 66.7 |
| TOTAL INVERIS | 77.4 | 41.9 | 31.3 | 139.0 | 150.1 | 67.3 | 0.2 | 0.4 | 0.0 | 3.6 | 3.8 |
|  |  |  |  |  | 150.2 | 67.4 | 32.7 | 27.3 | 83.0 | 85. 5 | 129.2 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CATCH | 400.4 | 290.1 | 1632.6 | 526.4 | 765.7 | S36.3 | 665.3 | 232.9 | 186.2 | 598.4 | 461.2 |


| HAUL MONTH/DAY/YEAR | $\begin{array}{r} 198 \\ 8 / 16 / 78 \end{array}$ | $\begin{array}{r} 199 \\ 8 / 16 / 78 \end{array}$ | $\begin{array}{r} 200 \\ e / 16 / 78 \end{array}$ |
| :---: | :---: | :---: | :---: |
| LAIITUDE SIART | 554.0 | 550.0 | 5455.0 |
| LONGITUDE SIART | 16722.0 | 16720.0 | 16721.0 |
| Latitude end | 554.9 | 5457.4 | 5456.6 |
| LONGITUDE ENS | 16719.8 | 16719.1 | 16724.2 |
| LOAAN START | 34876.30 | 18206.00 | 18180.90 |
| LORAN START | 18229.30 | 48612.80 | 48805.60 |
| LORAN ENO | 34870.90 | 18194.70 | 18182.70 |
| LORAN END | 18233.00 | 48796.50 | 48821.50 |
| GEAR DEPTH | 103 | 149 | 206 |
| DURATIDN IH HDURS | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.40 | 2.00 | 1.80 |
| Performance / Gear | - / 20 | $0 / 20$ | 0120 |
| POLlock | 142.8 | 60.0 | 5.9 |
| PAC CDD | 5.9 | 115.5 | 0.0 |
| PAC OC PERCH | 0.0 | 2.0 | 1.2 |
| OTHER FCKFISH | 0.0 | 0.0 | 13.9 |
| SABLEFISH | 0.0 | 0.0 | 0.0 |
| PAC HERRING | 0.0 | 0.0 | 0.0 |
| ATKA MACKEREL | 0.0 | 0.0 | 0.0 |
| SCULPINS | 8.7 | 14.8 | 6.8 |
| EELPOUIS | 5.4 | 19.6 | 0.1 |
| OTHER FNDFISH | 1.6 | 3. 6 | 1.8 |
| TOT ROUNDFISH | 164.4 | 215.6 | 29.7 |
| rellow sole | 0.0 | 0.0 | 0.0 |
| ROCK SOLE | 0.0 | 0.0 | 0.0 |
| FLatheao sole | 10.3 | 4. 5 | 0.6 |
| alaska plaice | 0.0 | 0.0 | 0.0 |
| GREENLAND TBT | 0.3 | 32.4 | 258.4 |
| AREOWTOOTH FL | 33.4 | 98.7 | 380.1 |
| PAC HALIBUT | 0.0 | 4.3 | 0.0 |
| OTHER FLTFISH | 0.4 | 0.0 | 0.6 |
| TOT FLAFFISH | 44.5 | 139.9 | 639.7 |
| Skates | 4.2 | 17.2 | 0.0 |
| TOT ELASMDBRH | 4.2 | 17.2 | 0.0 |
| REO KING CRAB | 0.0 | 0.0 | 0.0 |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 |
| TANNER. BAIRDI | 12.1 | 0.7 | 0.2 |
| TANAER, OPILID | 0.2 | 0.0 | 1.4 |
| TANNER, HYBRID | 0.0 | 0.0 | 0.0 |
| Other crab | 0.8 | 0.0 | 1.9 |
| SNAILS | 0.4 | 9.8 | 4.4 |
| SHEIMP | 29.9 | 6. 0 | 0.4 |
| STARFISH | 17.4 | 3.6 | 5.0 |
| SQUID | 0.3 | 0. 2 | 0.4 |
| OCTOPUS | 0.0 | 13. 2 | 0.1 |
| OTHER INVERTS | 4.1 | 0.7 | 1.2 |
| total inveris | 65.2 | 34.1 | 14.9 |
| OTHER | 0.0 | 0.0 | 0.0 |
| total catch | 278.2 | 406.9 | 684.3 |


| HAUL MCNIH/DAY/YEAR | $\begin{aligned} 62 \\ 6120178 \end{aligned}$ | 83 | 84 | 85 | 86 | 87 | 91 | 92 | 93 | 94 | 95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAIITUDE SIART | $6 / 20 / 78$ | 6/20/78 | E/20/78 | 6/24/78 | 6/24/78 | 6/24/78 | 7/1/78 | $711 / 78$ | $711 / 78$ | $711 / 78$ | $711 / 78$ |
| LONGITUEE STARI | $\begin{array}{r}56 \\ 170 \\ \hline 560.9\end{array}$ | 5642.0 | 57000 | 5659.0 | 5649.0 | 56 40.0 | 550.0 | 5458.0 | 550.0 | 5459.0 | 553.0 |
| LAJITUDE EAD | 5641.5 | 57 31.7 | 170 66.9 | 16931.9 | 16912.0 | 16853.9 | 16545.0 | 15545.0 | 16544.0 | 16535.0 | 16531.9 |
| LCNGITUDE END | 17011.1 | 1719.8 | 17048.1 | 16931.3 | 16912.0 | 56 16854.0 | 551.6 | 5456.8 | 551.7 | 55 1-2 | 55 2-7 |
| LGRAN StARI | 18542.00 | 18400.00 | 16507.00 | 18718.00 | 1867600 | 16854.4 | 16546.8 | 16545.3 | 16542.2 | 16533.5 | 16531.6 |
| LORAN SIARI | 50016.00 | 50106.00 | 35090.00 | 35017.00 | 34985.00 | 186451.00 | 34655-00 | 36659.00 | 34652.00 | 34631.00 | 34617-00 |
| LOAAN ENO | 18544.00 | 18393.00 | 18505.00 | 18715.00 | 18671.00 | 18635.00 | 34656-00 | 48270.00 | 48268.00 | 48212.00 | 48202.00 |
| LDRAN ERD | 50027.C0 | 50112.00 | 35087.00 | 35017.00 | 34987.00 | 34956.00 | 48283.00 | 34662.00 48266.00 | $34645-00$ $48257-00$ | 34624.00 48204.00 | 34616-00 |
| GEAR DEPIH | 52 | 59 | 49 | 32 | 43 | 52 | 780 | - 70 | +6257-00 | 68204.00 65 | 48195.00 63 |
| DURATION IN HDURS | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.53 |
| DISTANCE FISHED | 1.40 | 1.30 | 1.20 | 0.90 | 1.10 | 1.40 | 0.90 | 1.20 | 1.50 | 1.70 | 0.50 0.90 |
| PERFORMANCE / GEAR | 0/20 | $0 / 20$ | 0120 | $0 / 20$ | $0 / 20$ | 0.20 | $0 / 20$ | $0 / 20$ | 0 / 20 | -1.20 | 0.90 0.20 |
| POLLOCK | 71.7 | 158.7 | 371.9 | 1.6 | 14.5 | 13.2 | 65.3 | 100.2 | 83.0 | 18.1 | 3-6 |
| PAC CDD | 0.0 | 27.2 | 2.7 | 10.0 | 4.1 | 0.0 | 2.3 | 100.2 | 10.0 |  | 3-6 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0-8 | 10.0 0.0 | 264.0 | 12-2 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | C=0 |
| PAC HERRJNG | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C-0 |
| ATKA MACKEREL | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\mathrm{C}-0$ |
| SCULPINS | 0.9 | 5.9 | 0.9 | 4.5 | 54.4 | 34.0 | 19.1 | 7.3 | 12.7 | 6.8 | C-0 |
| EELPOUIS | 1.1 | 0.0 | 0.0 | 0.0 | 0.5 | 3.2 | 34.0 | 19.5 | 39.0 | 11.3 | 22-2 |
| DIMER RNDFISH | 0.9 | 1.6 | 0.0 | 1-1 | 0.2 | 0.0 | 0.1 | 0.1 | 0.0 | 1. | 22-2 |
| TOT ROLINDEISH | 74.6 | 203.4 | 375.6 | 17.2 | 73.7 | 50.3 | 120.8 | 134.8 | 145.6 | 300.4 | 47.6 |
| YELIOM SOLE | $0: 0$ | 0.0 | O.C | 64.0 | 27.7 | 20.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| RCCM SOLE | 0.0 | 0.0 | 0.0 | 19.1 | 2.5 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.10 |
| FLATHEAD SCLE | 5.0 | 7.7 | 12.2 | 0.0 | 9.5 | 5.0 | 10.4 | 14.1 | 14.1 | 4.5 | 10.0 |
| ALASKA PLAICE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | - 0 | 1 C .0 |
| GREENLAAD IET | Q. 2 | 6.8 | 10.0 | 0.0 | 5.4 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | C. 0 |
| ARROWTOCJH FL | 1.1 | 2.3 | 0.0 | 0.0 | 3.2 | 4.5 | 10.4 | 19.1 | 10.0 | -0 | C. 0 |
| PaC Haliect | C. 0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 19.2 0.0 | 10.4 | 2.9 | 7. |
| DTHER FLIFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.1 | 1.7 | C-0 |
| IOI FLAJfish | 14.3 | 16.8 | 22.2 | 83.1 | 48.3 | 36.1 | 21.5 | 33.3 | 24.6 | 9.4 | 18.4 |
| SKATES | 0.5 | 0.0 | 13.2 | 0.0 | 0.0 | 0.0 | 25.9 | 38.1 | 33.6 |  |  |
| TO1 ELASNCERH | 0.5 | 0.0 | 13.2 | 0.0 | 0.0 | 0.0 | 25.9 | 38.1 | 33.6 33.6 | 14.5 14.5 | 20.4 20.4 |
| RED KING CRAB | 0.0 | 0.0 | 0.0 | 15.9 | 0.0 | 0.0 | 43.8 | 10.2 | 20.2 |  |  |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 1046.9 | 54.0 | 3-2 | 0.0 | 0.0 | 0.0 | 0.0 | 20.6 0.0 |
| BAMAEF, BAIRDI | 3.5 | 6.8 | 2.9 | 3.1 | 8.2 | 3.9 | 13.2 | 37.2 | 16.9 | 9.8 | 31-5 |
| TANNER, OPILIO | 4.1 | 1.6 | 1.8 | 18.7 | 60.3 | 69.4 | 3.6 | 5.9 | 4.2 | 11.3 | 31.5 |
| JAhNER, HYBRIC | 0.9 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  | 13.2 |
| OTHER CRAB | 4.1 | 0.7 | 0.0 | 20.8 | 8.6 | 0.5 | 1.3 | 0.0 | 0.0 | -0.5 | C.0 |
| SNAILS | 0.5 | 2.7 | 0.6 | 8.2 | 0.0 | 0.5 | 2.0 | 1.0 | 1.4 | $0-1$ | $4-5$ |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | -1 | 0.2 $C-0$ |
| STARFISH | 23.6 | 15.9 | 0.0 | 25.4 | 0.0 | 0.0 | 1.4 | 0.5 | 0.1 | 1.1 | $C-0$ |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | C-0 |
| OCIOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| CTHER INYEFTS | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |  |  | 0.0 | 0.0 | 0.5 |
| TOTAL INYERTS | 37.0 | 27.7 | 5.3 | 1143.4 | 134.3 | 77.3 | 9.1 7.3 | 2.7 62.5 | 4.1 47.0 | 0.0 45.4 | C. 70.5 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 |
| IOIAL CATCH | 126.3 | 247.9 | 416.3 | 1243.8 | 256.3 | 163.7 | 242.4 | 268.7 | 250.8 | 369.7 | 156.5 |

Table A-2a.--Continued.

| haUl MONIH/DAY/YEAR | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MDNIH/DAY/YEAR | 7/3/78 | $7 / 3 / 78$ | 71 3/72 | $7 / 4 / 78$ | $7 / 4 / 78$ | 714178 | 7/4/78 | $7 / 5 / 78$ | 715178 | 7/5178 | 7/5178 |
| LAIITUDE SIARI | 5519.0 | 5520.0 | $55 \quad 19.0$ | 5520.0 | 5520.0 | 5519.0 | 5520.0 | 562 cos | 5626.0 | 5630.0 | 5621.0 |
| LCNGITUCE STA | 164 , 550 | 164000 | 1641.9 | $164 \quad 35.0$ | 16436.0 | 16441.0 | 16444.0 | 16512.0 | 165 4.0 | 164 49-0 | 16419.0 |
| LONGITUDE END | $\begin{array}{rr}55 & 18.4 \\ 164 & 0.0\end{array}$ | $\begin{array}{rr}55 & 20.2 \\ 184 & 2.8\end{array}$ | 165420.0 | 5519.2 16434.0 | 5521.4 | 5519.9 | 5519.5 | 5621.4 | 56 26-5 | 56 31.1 | 5628.3 |
| LORAN STARI | 34336.00 | 34335.00 | 164340.00 | 164 34426.00 | 164 34429.00 | 164.43 .5 34445.00 | 16446.7 $34452-00$ | 16514.0 | 1653.2 | 16448.3 | 16418.3 |
| LCRAN STARI | 47652.00 | 47656.00 | 47664.00 | 47872.00 | 34429.00 47292.09 | 34445.00 4791200 | $34452-00$ $47933-00$ | 36322.00 | 34274.00 | 34209.00 | 36137.00 |
| LOFAN END | 34339.00 | 34341.00 | 34344.00 | 344.26.00 | 34432.00 | 34449.00 | 44459.00 | 48158.00 | 42109.00 | 48009.00 | 47809.00 |
| LCRAN END | 47649.00 | 47668.00 | 47674.00 | 47863.00 | 47894.00 | 47923.00 | 47943-00 | 34323.00 48168.00 | 34268.00 | 34203.00 | 34128.00 |
| GEAA DEPIH | 39 | 41 | 42 | 55 | 478945 | +79235 | +8943-00 | 48168.00 | 48098.00 | 48000.00 | 47801.00 |
| DLRATIDN IA HCURS | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0. 50 | - 46 | 41 | 40 |
| DISTANCE FISHED | 1.30 | 1.20 | 0.90 | 1.40 | 1.20 | 1.10 | 1.30 | . 1.10 | 0.50 | 0.50 | 0.50 |
| Performance / Geari | 0120 | 0120 | $0 / 20$ | $0 \% 20$ | C 120 | -120 | 1630 0120 | 1.10 0120 | 1.00 $0 \% 20$ | 0.96 $0 \% 20$ | $1-40$ $0 \% 20$ |
| PCLLOCK | 52.6 | 29.9 | 40.8 | 39.5 | 154.7 | 158.8 | 87.5 | 110.7 | 147.0 |  |  |
| PAC COD | 12.7 | 33.1 | 18.1 | 0.0 | 8.6 | 1.4 | 1.4 | 110.8 10.0 | 148.0 | 65.3 | 23.1 |
| PAC OC PERCH | C. 0 | C. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 0.0 | 14.1 0 | 2. 3 |
| DIHER FCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | C. 0 0.0 |
| SABLEFISH | 0.9 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.1 | 0.0 | 0.0 |  |  |
| PAC HEJFING | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 | 0.0 0.0 | 6.0 0.0 |
| ATKA Mackerel | 0.0 | 0.2 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | C.0 |
| SCULPINS | 33.1 | 39.5 | 30.8 | 5.9 | 5.4 | 1.4 | 2.3 | 8.6 | 11.8 |  | 0. |
| EELPOUIS | 0.0 | 0.0 | 0.2 | 32.2 | 39.5 | 65.8 | 54.9 | 16.3 | 11.8 | S.4 | 9.1 |
| OTHER RNOFISH | C. 4 | 5.0 | 4.2 | 0.6 | 0.2 | 0.8 | 0.3 | 0.1 |  | 2.3 | 0.1 |
| TCI ROUNDFISH | 99.7 | 107.7 | 94.2 | 78.1 | 209.0 | 228.5 | 146.5 | 145.7 | 0.2 180.9 | 0.2 87.3 | 0.1 34.7 |
| YELLOH Sale | 662.2 | 337.0 | 369.7 | 16.3 | 28.1 | 18.6 | 14.5 | 137.4 | 239.9 |  |  |
| ROCK SOLE | 13.2 | 53.1 | 27.7 | 10.9 | 18.1 | 9.5 | 3.2 | 6.8 | 239.9 | 266.3 | 366.5 |
| FLAIHEAD SCLE | 49.0 | 7.3 | 28.1 | 18.6 | 27.7 | 16.8 | 9.1 | 6.8 26.3 | 9.5 29.5 | 1-6 | 3.6 |
| ALASKa flaice | 1.4 | 1.4 | 0.9 | 1.8 | 3.6 | 11.3 | 5.1 | 26.3 | 29.5 22.7 | 13-6 | 6.4 |
| GREENLAND 18I | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 1.1 | 0.7 | 10.0 | 22.7 | 13.6 | 15.9 |
| ARGOWIOOIH FL | 16.3 | 4.1 | 11.8 | 14.5 | 39.5 | 40.4 | 8.2 | 0.5 | 8.2 0.0 | 5.2 | 8.6 |
| PAC HALIBLT | 1.6 | 0.5 | 0.0 | 1.8 | 13.8 | 2.0 | 3.2 | C. 0 | 0.0 0.0 | 0.0 | C. 0 |
| OTHER FLIFISH | 16.3 | 5.5 | 7.1 | 6.4 | 13.5 | 1.8 | 0.5 | C. 0 0.0 | 0.0 0.0 | 0.0 0.0 | C. 0 |
| TOT FLATFISH | 760.0 | 408.8 | 425.3 | 70.3 | 136.7 | 101.6 | 44.7 | 205.5 | 0.0 309.8 | 287.8 | 0.0 401.0 |
| SKAIES | 0.0 | 0.5 | 7.3 | 16.8 | 3.2 | 0.4 | 0.1 |  |  |  |  |
| IOT ELASNORRH | 0.0 | 0.5 | 7.3 | 16.8 | 3.2 | 0.4 | 0.1 | 0.9 0.9 | 0.0 0.0 | 0.0 0.0 | 0.0 |
| REO KING CRAB | 199.6 | 120.7 | 94.3 | 28.6 | 33.1 | 74.8 |  |  |  |  |  |
| blue king crag | 0.0 | 0.0 | 0.0 | 0.0 | 33.1 0.0 | 74.8 0.0 | 7.6 $C .0$ | 51.9 0.0 | 1.2 0.0 | 651.8 | 1232.0 |
| IANNER, BAIROI | 169.0 | 150.6 | 127.5 | 84.4 | 53.5 | 54.4 | 50.8 | 4. 3 | 0.0 | 0.0 | 0.0 |
| TANNER, CPILIC | 0.0 | 4.1 | 5.4 | 29.2 | 22.2 | 24.9 | 21.3 | 12.3 | 21. 5 | 15.5 | 5.0 |
| Tanaer, hyerid | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | C.0 | 21.3 0.0 | 12.1 C. | 21.5 0.0 | 50.3 | 5.2 |
| DJHER CFAB | 5.9 | 25.3 | 25.4 | 25.6 | 11.4 | 15.0 | 17.3 | C. 0 | 0.0 | 0.1 | C. 0 |
| SNAILS | 0.5 | 2.3 | 0.9 | - 0.6 | 3.9 | 15.0 3.7 | 17.3 | 11.4 | 12.4 | 9-1 | 1.8 |
| SHRIMP | 0.0 | 0.0 | $0: 0$ | 0.0 | 0.0 | 0.0 | 1-6 | 265.1 | 32.2 | 4.5 | 1.0 |
| SIARFISH | 0.0 | 0.0 | 1.4 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 24.5 | 0.0 | 0.0 | C. 0 |
| Scuid | 0.0 | 0.0 | 0:0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.5 | 36.3 | 22.2 | 10.4 |
| CCIOPUS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - 0 | 0.0 | 0.0 | 0.0 |
| CTHEA IfyERTS | 0.0 | 0.0 | 0.0 | $\therefore \quad 0.0$ | 0.0 | $0 \cdot 0$ | 0.0 | 1.4 | 0.5 | 0.9 | 0.9 |
| IOTAL INYERTS | 374.9 | 302.9 | 254.9 | 169.0 | 124.2 | 172.9 | c.0 168.4 | 0.0 370.8 | 0.0 179.5 | 0.0 754.5 | C.0 1256.3 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TOJAL CATCH | 1234.6 | 819.8 | 781.7 | 334.2 | 473.0 | 503.4 | 359.6 | 722.9 | 678.2 | 1129.6 | 1692.0 |

Table A-2a.--Continued.

| Haul | 107 | 108 | 109 | 110 |
| :---: | :---: | :---: | :---: | :---: |
| HGHTH/DAY/YEAR | $7 / 6 / 78$ | $716 / 78$ | 7/6/78 | 716178 |
| LAIITUDE STARI | 5659.0 | 573.0 | 575.0 | 57 7.0 |
| LONGITUDE START | 16323.0 | 16323.9 | 26327.0 | 163 30.0 |
| LAJITUDE END | 57 0.5 | 57 5.0 | 576.7 | 578.7 |
| LONGITUCE END | 16325.3 | 16325.6 | 163 28.9 | 16331.0 |
| LCAAN STARI | 33811.60 | 33792.00 | 33793.00 | 33788.00 |
| LCRAN STARI | 47427.00 | 47434.00 | 47455.00 | 47472.00 |
| LOFAN ENO | 33812.00 | 33788.00 | 33787.00 | 33782.00 |
| LCRAN END | 47440.00 | 47440.00 | 47461.00 | 47475.00 |
| Gear cefin | 35 | 34 | 33 | 33 |
| DLRATIOK IN HOLRS | 0.50 | 0.50 | C. 50 | 0.50 |
| DISTANCE FISHED | 1.20 | 1.30 | 1.60 | 1.30 |
| PERFORMANCE / GEAR | 0120 | $0 / 20$ | 0 - 20 | $0 / 20$ |
| PDLlden | $13 E .5$ | 184.6 | 41.5 | 29.0 |
| PAC COD | 1.4 | 1.8 | 1.1 | 1.8 |
| PAC OC PERCH | 0.0 | 0.0 | 0.0 | 0.0 |
| DIMER RCKFISH | C. 0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 |
| PaC Heghing | 0.0 | 0.0 | 0.0 | 0.0 |
| ATKA MACKEREL | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 11.3 | 6.8 | 3.4 | 7.7 |
| EELPOUIS | 5.0 | 0.5 | 1.4 | 1.4 |
| CTHER RNOFISH | 1.6 | 4.2 | 3.9 | 1.1 |
| TOI ROUNDFISH | 155.8 | 197.9 | 51.3 | 41.0 |
| YELLOM SOLE | 224-5 | 188.2 | 156.0 | 128.4 |
| ROCX SOLE | 3.2 | 1.1 | 1.4 | 0.2 |
| flaihead sole | 36.3 | 5.9 | 5.9 | 7.3 |
| ALASKA FLALCE | 23.1 | 14.1 | 5.0 | 3.6 |
| GREENLAND TET | 6.4 | 1.6 | 2.3 | 2.7 |
| ARROMTOCTH FL | 0.0 | 0.0 | 0.0 | 0.0 |
| Pac malisli | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER FLIFISH | C. 0 | 0.0 | 0.0 | 0.0 |
| IOT FLAIFISH | 293.5 | 210.9 | 170.6 | 142.2 |
| Skates | 4.5 | 0.0 | 0.0 | 0.0 |
| TOI ELASMOERH | 4.5 | 0.0 | 0.0 | 0.0 |
| REO KING Chab | 55.6 | 12.7 | 7.0 | 6.4 |
| BLIE KING CRAE | 0.0 | 0.0 | 0.0 | 0.0 |
| JAFMER, BAIRDI | 14.1 | 7.3 | 2.7 | 3.2 |
| TANNER, OPILIO | 55.3 | 34.6 | 21.5 | 24.7 |
| JAFNER. HYBRID | 1.8 | 0.0 | 0.4 | 0.0 |
| Gimer crab | 16-1 | 4.6 | 3.2 | 1.7 |
| SNAILS | 10.0 | 1.8 | 2.5 | 2.7 |
| SHFXMP | 0.0 | 0.0 | 0.0 | 0.0 |
| STARFISH | 40.4 | 0.9 | 1.8 | 0.9 |
| SOUID | 0.0 | 0.0 | 0.0 | 0.0 |
| OCTEPUS | 0.5 | 0.0 | 0.0 | 0.0 |
| Other INYERIS | 0.0 | 0.5 | 0.0 | 1.4 |
| TOTAL LAVERTS | 193.7 | 62.3 | 39.1 | 40.9 |
| DTHEA | 0.0 | 0.0 | 0.0 | 0.0 |
| TOTAL CAJCh | 647.5 | 471.1 | 261.0 | 224.1 |

Table A-2b.--Station and catch data from comparative fishing experiments successfully completed--paragon II.


Table A-2b.--Continued.


| HALL | 53 | 54 | 55 | 56 |
| :---: | :---: | :---: | :---: | :---: |
| HONTH/DAY/YEAR | $716 / 78$ | 7/6/78 | 7/ 6/78 | $786 / 78$ |
| LAJITUDE START | $5659 . \mathrm{C}$ | 572.0 | 574.0 | 576.0 |
| LONGITUCE START | 16322.0 | 16323.0 | 16327.0 | 16328.0 |
| LAIITUDE END | 5659.6 | 57 4.8 | 576.5 | 57 8.7 |
| LONGITUCE END | 16324.4 | 16325.4 | 16327.7 | 16328.6 |
| LORAN STARI | 33812.50 | 33793.40 | 37793.80 | 33787.10 |
| LGRAN STARI | 18705.20 | 18710.40 | 18713.00 | 18715.20 |
| LOFAN END | 33814.50 | 33728.40 | 33785.20 | 33774.80 |
| LCRAN END | 1970 ¢ 10 | 18712.90 | 18715.00 | 18717.70 |
| GEAR DEPIH | 35 | 34 | 34 | 34 |
| DURATICA IN HCURS | C. 50 | 0.50 | 0.50 | 0.50 |
| DISTANCE FISHED | 1.50 | 2.00 | 1.80 | 2.00 |
| PERFJRMANCE / GEAR | 0/20 | 0 / 20 | $0 / 20$ | $0 / 20$ |
| PCllock | 128.4 | 130.5 | 55.2 | 12.5 |
| PAC COD | 9.5 | 1.8 | 2.9 | 2.3 |
| PAC DC PERCH | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HEFRING | 0.1 | 0.0 | 0.0 | 0.0 |
| AIKA MACKEREL | 0.0 | 0.0 | 0.0 | 0.0 |
| SCULPINS | 15.3 | 12.5 | 16.4 | 42.9 |
| EELFOUTS | $6 . C$ | 3. 6 | 3.0 | 4.2 |
| CTHER RADFISH | 3.1 | 7.5 | 4.2 | 4.8 |
| IOI ROUNDFISH | 162.4 | 155.9 | 81.8 | 66.6 |
| YELLOn SOLE | 366-4 | 56a.7 | 347.7 | 490.8 |
| ROCK SOLE | 4.4 | 6.6 | 4.5 | 3.9 |
| FLATHEAD SCLE | 49.2 | 17.0 | 8.4 | 20.2 |
| ALASKA Plaice | 36.4 | 52.4 | 28.0 | 36.2 |
| GREENEAND JBT | 8.2 | 7.2 | 6.0 | 6.4 |
| ARACMTCCIH FL | 0.0 | 0.0 | 0.0 | 0.0 |
| PAC HALIBLT | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER FLTFISH | 0.0 | 0.0 | 0.0 | 0.0 |
| TOT FLAJFISH | $4 E 4.5$ | 651.9 | 394.7 | 557.4 |
| SKAIES | 0.0 | 0.0 | 0.8 | 0.0 |
| IOI ELASMOGRH | 0.0 | 0.0 | 0.8 | 0.0 |
| RED KING CRAB | 84.6 | 27-1 | 27.0 | 40.8 |
| BlUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 |
| JANNER. BAIRDI | 27.2 | 32.7 | 63.5 | 49.1 |
| TANNEF. OPILIC | 103.4 | 171.6 | 207.5 | 175.3 |
| IAMNER - HYERID | 5.0 | 0.0 | 0.0 | 0.1 |
| OTHER CRAE | 25.2 | 23.9 | 64.2 | 57.7 |
| SNAILS | 14.4 | 20.0 | 18.6 | 45.1 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 0.0 |
| STAFFISH | 98.2 | 3.3 | 2.9 | 1.8 |
| SQUID. | 0.0 | 0.0 | 0.0 | 0.0 |
| CCJCPUS | C. 0 | $0 \cdot 0$ | 0.0 | 0.0 |
| OTHER. INVERTS | 0.2 | 5.4 | 0.8 | 2.3 |
| IOJAL INVERTS | 358.2 | 284.0 | 384.5 | 372.3 |
| OTHER | C. 0 | 0.0 | 0.0 | 0.0 |
| total caten | 985.1 | 1091.8 | 861.7 | 996.4 |


| haUl MONTH/DAY/YEAR | $5 / 31 / 78$ |
| :---: | :---: |
| LATITUDE START | 5622.0 |
| LONGITUEE STARE | 16029.0 |
| LATIIUDF END | 5621.5 |
| LONGITUDE END | 16030.4 |
| LORAN START | 33554.40 |
| LORAM SIART | 46279.60 |
| LOFAN END | 33558.60 |
| LDEAN END | 46282.80 |
| gear depth | 15 |
| DUAATION IN AOURS | 0.30 |
| DISTANCE FISHED | 0.70 |
| PERFORMANCE / GEAR | 6 /20 |
| POLLOCK | 0.5 |
| PAC COD | 5.0 |
| PAC OC PERCH | 0.0 |
| OTHER RCKFISH | 0.0 |
| SABLEFISH | 0.0 |
| PAC HERRING | 0.0 |
| ATKA MACKEREL. | 0.0 |
| SCULPINS | 8.2 |
| EELPOUTS | 0.0 |
| OTHER RNDFISH | 3.5 |
| TOT ROUNDFISH | 17.1 |
| YELLOH SOLE | 271.6 |
| RDCK SCLE- | 38.8 |
| Flathead sole | 0.0 |
| ALASKA PLAICE | 0.1 |
| GREENLAND TBI | 0.0 |
| ARROWTOOTH FL. | 0.1 |
| PAC HALIBUJ | 13.6 |
| OTHER FLTFISH | 9.3 |
| TOT FLAIFISH | 339.5 |
| SkAtes | 0.0 |
| TOT ELASMOBRH | 0.0 |
| RED KING CRAB | 3.6 |
| BLUE KING CRAB | 0.0 |
| TANNER. BAIRDI | 1.4 |
| TANRER, OPILIO | 0.0 |
| J.ANNER, HYBRID | 0.0 |
| OTHER CRAB | 0.6 |
| SNAILS | 0.0 |
| SHRIMP | 0.0 |
| STARFISH | 15.7 |
| $50 \cup 10$ | 0.0 |
| OCTOPUS | 0.0 |
| OTHER INVERTS | 30.1 |
| TOTAL INYERTS | 51.4 |
| OTHER | 0.0 |
| TOTAL CATCH | 40E.0 |


| HAUL | 12 | 121 | 143 | 157 | 201 | 202 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HONTH/DAY/YEAR | 6/25/78 | 7/25/78 | B/ 3178 | e/ $6 / 78$ | 8/16/78 | 8/16/78 |
| LAIITUDE START | 5613.0 | 6020.0 | 5740.0 | 5859.0 | 5454.0 | 54 54.0 |
| LONGITUDE START | 16927.0 | 17323.0 | 1740.9 | 17422.0 | 16727.1 | 16124.9 |
| LAIITUDE END | 5613.8 | 6019.9 | 5740.7 | 590.4 | 5454.1 | $54 \quad 55.4$ |
| LONGITUDE END | 16924.8 | 17320.5 | 17358.9 | 17426.2 | 16725.2 | 167 26.8 |
| LDRAN START | 35074.50 | 32873.30 | 34375.90 | 33666.70 | 18167.90 | 1E167.80 |
| LORAN SIART | 49711.00 | 17452.70 | 17345.40 | 17269.60 | 40836.30 | 48819.60 |
| LORAN END | 35070.00 | 32815.80 | 34376.20 | 33658.40 | 18168.09 | 17171.90 |
| LORAN END | $49700.00)$ | 17464.70 | 17361.20 | 17248.80 | 40820.00 | 48832.30 |
| GEAR DEPTH | 203 | 32 | 71 | 68 | 250 | 248 |
| DURAIION IN HDURS | 0.50 | 0.50 | 0.50 | 9.50 | 0.50 | 0.50 |
| OISTANCE FISHED | 1.30 | 1.50 | 1.41) | 2.00 | 1.70 | 1.60 |
| PERFDRMANCE / GEAR | $7 / 20$ | $7 / 20$ | 7120 | 7120 | 5120 | 1120 |
| POLlock | 0.0 | 0.0 | 3.1 | 5.5 | 0.0 | 2.4 |
| PAC COD | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 |
| PAC DC PERCH | 0.0 | 0.0 | 11.1 | 0.0 | 0.0 | 0.0 |
| OTHER RCKFISH | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 10.7 |
| SABLEFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35. 5 |
| PAC HERRING | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ATMA HACKEREL | 0.0 | 0.0 | 0.0 | 0.0 | C. 0 | 0.0 |
| SCULPINS | 0.0 | 0.0 | 8.4 | 1.0 | 0.0 | 5.3 |
| EELPDUTS | 0.0 | 0.0 | 0.0 | 4.4 | 0.17 | 49.6 |
| OTHER RNDFISH | 0.0 | 0.0 | 1.8 | 0.3 | 0.0 | 18.1 |
| TOT ROUNDFISH | 0.0 | 0.0 | 26.7 | 11.2 | 0.0 | 121.5 |
| YELLOW SOLE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| ROCK SOLE | 0.0 | 0.0 | 2.6 | 0.0 | 0.0 | 0.0 |
| FLATHEAD SOLE | 0.0 | 0.0 | 8.7 | 0.0 | 0.0 | 0.0 |
| alaska plaice | 0.0 | 0. 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| GREENLAND TBI | 0.0 | 0.0 | 0.9 | 0.3 | 0.0 | 171.3 |
| ARROWTOOTH FL | 0.0 | 0. 0 | 75.8 | 0.4 | 0.0 | 26.3 |
| PAC HALIBUT | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 |
| OTHER FLTFISH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6. 4 |
| TOT FLATFISH | 0.0 | 0.6 | E8.8 | n. 7 | O.D | 204.0 |
| SKATES | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| TOT ELASHOBRH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| RED KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| BLUE KING CRAB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| TANNER. BAIRDI | 0.0 | 0. 0 | 4.4 | 0.0 | 0.0 | 0.0 |
| TANNER, OPILID | 0.0 | D. 0 | 0.0 | 0.7 | 0.0 | 0.9 |
| TANNER. HYBRID | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| OTHER CRAB | 0.0 | 0.0 | 0.8 | 1.3 | 0.0 | 0.2 |
| SNAILS | 0.0 | n. 0 | 0.0 | 3.3 | 0.0 | 5.5 |
| SHRIMP | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
| STARFISH | 0.0 | 0.0 | 0.5 | 0.2 | 0.0 | 13.3 |
| SOU10 | 0.0 | D. 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DCTMPuS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 |
| OTHER INVERTS | 0.0 | 0.0 | 0.6 | 0.1 | 0.0 | 3.1 |
| TOTAL INVFRTS | 0.0 | 0. 0 | 6.3 | 7.4 | 0.0 | 23.7 |
| OTHER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
| JOTAL CATCH | 0.0 | 0.0 | 121.7 | 19.4 | 0.0 | 349.5 |

## APPENDIX B

Rank Order of Relative Abundance for Fish and Invertebrates
Appendix $B$ contains a computer listing of all fish and invertebratescaught during the 1978 survey ranked in order of relative abundance (kg/ha).
LIST OF TABLES
Table ..... Page
B-l. Rank order of fish and invertebrates collected from the total survey area ..... 101
JOTAL JRAHLS 236 TOTAL SPECIES 2IE TJTAL EFFORT 819：1 HA

SPECIES fankld by mean cpue（KG／ha）

| RANK | SPECIES | Mexin cpue （Ku／idA） | 90 PERC ＊－－－CONFIDENCE | EN T <br> LIMITS＊ー日 | PROPORTICI | cumulative PKOPORTION | Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21740 | 67.45562 | 54.10235 | 80.60929 | 0.30775737 | 0.30975737 | halleye pollgek |
| 2 | 10210. | 49.81061 | 40.02957 | 59.60165 | 0.22873054 | 0.53848793 | Yellowfin sole |
| 3 | 68580 | 12． 26502 | 10.23364 | 14.29641 | 0.05632104 | 0．594＋0E96． | TANNFA CAin（upilios |
| 4 | 69522 | 10.65166 | 8.15906 | 13.11426 | 0.04891246 | 0.64372143 | RED KING CRAE |
| 5 | 21720 | \＃． $203 \pm 6$ | 3．7E4it | 14．62320 | 0.04226460 | 0.68578603 | PACLFIC COD |
| 6 | E0usu | 7．0cel7 | 4．3：265 | 9．E6360 | 0.03254688 | 0.71853491 | STARFISM UNIDENT |
| 7 | 10260 | 5.19284 | 4.04342 | 6.34227 | 0.02384556 | 0.74238047 | POCK SOLE |
| $E$ | 10285 | 4．ع̇く7E5 | 2．EE 707 | 6.76864 | 0.02216952 | 0.76454999 | alaska plaicf |
| 9 | 91000 | 4.12751 | 1.05794 | 7.19709 | 0.01295355 | 0.78350354 | SPCNGE UNSDENT |
| 10 | 21371 | 3． 95453 | 1.04408 | 6.86496 | 0.01815722 | 0.20166276 | Plaln sculpin |
| 11 | 68560 | 3.75736 | 3.03007 | 4．4E469 | 0.0172538 | 0.81891666 | tanner caab（baifois）． |
| 12 | 10115 | 3.15947 | 2.74 .964 | 3.56931. | 0.01450630 | 0.83342496 | GREENLAND TUR3OT |
| 13 | 63010 | 3.05290 | 2.45305 | 3.65276 | 0.01401695 | 0.24744391 | HERKIT CRAB UNIDFNT |
| 14 | 10130 | 2.50075 | 2．05803 | 2.44346 | 0.01148543 | 0.85892734 | flathead dole |
| 15 | 83020 | 1.92805 | 1.064 .48 | 2.79162 | 0.00885359 | 0．E6r7eu33 | GURGUNOCEPHALUS CARYI |
| 16 | 2410 | 1．55978 | 1．2E 706 | 1．E323＊ | 0.00716342 | 0.87474435 | WATTLED EELPOUT |
| 17 | 24191 | 1.47533 | 1.16066 | 1.78999. | 0.00671472 | 0.88171906 | SHORTFIN EELPOUT |
| 12 | 7LEE | 1．46\％i2 | 0．3j08： | 1． 78464 | 0.00673678 | 0．8e645．684 | NEPTUNEA HERQS |
| 19 | 2416） | 1.3810 T | 0.26454 | 2.49751 | 0.00634167 | 0.89480053 | polar eelpout |
| 20 | 10110 | 1.32135 | 0.74657 | 1.65653 | 0.100606856 | 0.90086909 | ARFOWTOOTH FLOUNDER |
| 21 | ：00400 | 1． 2 E 53.3 | 1．0315E | 1.53907 | 0.00590222. | 0.90677131 | SKATE UNIDENT |
| 22 | 24100 | 1.27644 | 0.71005 | 1.78222 | 0.00586146 | 0.71263273 | EELPOUT UNIDENT |
| 23 | 69323 | 1.23146 | n．3－39： | 2．1：901 | 0.00565488 | 0.91828760 | 3LUF KING CRAB |



Table B - 1.--Continued.

| FANK | SPECIES | mean cpuf. (KU/HA) | $\rightarrow$ PFFCF - ---CONFIDENCE | $\begin{aligned} & \text { FNT } \\ & \text { LIMITS:- } \end{aligned}$ | PROPORTION | CuAULATIVF. PREPORTION | NaME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | 21342 | 0.20164 | 0.08845 | 0.31482 | 0.00012532 | 0.98326170 | IRISH LORD |
| 53 | ع1742 | 10.17611 | 0.00000 | 0.41664 | O. Oujegtiu | $0.9 E 407040$ | PURHLC-OGANGF SEASTAR |
| 54 | 22204 | 0.17355 | 0.12033 | 0.22671 | 0.00059693 | 0.98486733 | Mardlid snailfish |
| 55 | 71500 | 0.16522 | 0.1:124 | 0.21915 | 0.00j) 5t 6E | 0.96562601 | SNAIL UNIOFNT |
| 56 | 21516 | 0.15791 | 0.00000 | 0.41063 | 0.00072512 | 0.98635113 | - RMorhead sculpin |
| 57 | 21438 | 0.15623 | 0.12347 | 0.18698 | 0.00071762 | 0.98706855 | THOKNy SCULPIN |
| 58 | E0u20 | 0.15349 | 0.00001 | 0.32496 | 0.000719485 | 0.98777340 | EVAJTERIAS ECHINOSOMA |
| 5\% | 21420 | 0.15138 | 0.03347 | 0.26530 | 0.00069515 | 0.98846854 | 3IGMOUTH SCULPIN. |
| 60 | 21314 | 0.14824 | 0.96233 | 0.23516 | 0.00068074 | 0.9891492 E | THREADED SCULPIN |
| 62 | 20720 | 0.14441 | 0.00000 | 0.30167 | 0.00066311 | 0.98981239 | SEARCHER |
| 62 | 23010 | 0.14149 | 0.06274 | 0.22004 | 0. 00054772 | 0.99046212 | EULACHOA |
| 63 | 69070 | 0.13067 | 0.03970 | 0.22164 | 0.90060004 | 0.99106215 | Pagurus jchotensis |
| 64 | 69120 | 0.11901 | 0.02015 | 0.21788 | 0.00054651 | 0.99260867 | Pagurus capillatus |
| 65 | 6SU86 | 0.11331 | 0.94166 | 0.16571 | 0.00052217 | 0.99213023 | Pagurus thjgonochejrus |
| 66 | 21390 | 0.10966 | 0.00320 | 0.15612 | 0.00050354 | 0.99263437 | SPINYHEAD SCULTIN |
| 67 | 00430 | 0.095; 2 | 0.04280 | 0.14858 | 0.00043754 | 0.99307392 | SANDPAPER SKATE |
| 68 | 63060 | 0.09214 | 0.00000 | 0. 20478 | 0.00154312 | 0.99349704 | pagurus tleuticus |
| $6 \%$ | 41221 | 0.09858 | 0.00000 | 0.20629 | 0.00040575 | 0.99390380 | EUNEPHTHYA (GERSEMIA) RUSIFORAIS |
| 70 | E 0310 | $0.0881) 6$ | 0.00910 | 0.16703 | 0.00 .240433 | 0.99430619 | PISASTER SP |
| 71 | 21932 | 0.08358 | 0.02580 | 0.14136 | 0.00038379 | 0.99409198 | WHITESPOTTED GREENLING |
| 72 | 83000 | 0.06667 | 0.01585 | 0.11749 | 0.00030613 | 0.954×9812 | 日fittlestarfishi unident |
| 73 | 72340 | 0.05912 | 0.03 E 73 | 0.07950 | 0.100027147 | $0.9952695 t$ | BUCEINUM SP |
| 74 | 72500 | 0.05703 | 0.03399 | 0.08007 | 0.00026185 | C.99553147 | FUSITRITIN OREGONENSIS |
| 75 | $22<36$ | 0.04328 | 0.103028 | 0.05628 | 0.00019873 | 0.99513020 | PINK SNAILFISH |
| 76 | 21350 | 0.04307 | 0.01593 | 0.07021 | 0.00019777 | 0.99592799 | TRIGLOPS SP |
| 73 | 10200 | 0.04273 | 0.02447 | 0.06098 | 0.00019620 | 0.99612419 | REX SOLE |
| 18 | 22200 | 0.03402 | 0.191945 | 0.105659 | 5.00117919 | 0.99630338 | SNAILFISH UNIDENT |
| 79 | 72743 | 0.03268 | 0.01897 | 0.04639 | 0.00025007 | 0.99545344 | BUCLINUM ANGULOSSUM |

Table B-l.--Continued.

| GANK | SPECIES | MEAIC CPUF (KG/H4) | 30 PFFRCF <br> *---CONFIDENCE | NT LIMLIJ- | PROPDRTI CN | CUMULATIVE PROPIRTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | 69410 | 0.03156 | 0.00000 | 0.07676 | $0.0001467 \%$ | 0.99660022 |  |
| 81 | 23041 | 0.02976 | 0.0166E | 0.04263 | 0.00013664 | 0.99673686 | CAPELIN |
| 82 | 10220 | 0.02907 | 0.00080 | $0.05 i 34$ | 0.00013347 | 0.99687033 | STARRY FLOUNDER |
| 83 | 11001 | $0.0284 E$ | 0.01117 | 0.04574 | 0.90013067 | 0.99700079 | SNALL (GASTFOPOD) EGGS |
| 84 | 82510 | 0.02332 | 0.00000 | 0.06391 | 0.000130 .04 | 0.94713103 | GREEN SEA URCHIN |
| 85 | 71750 | 0.02786 | 0.01759 | 0.03812 | 0.00012892 | 0.99125694 | VOLUTOPSIUS SP |
| 86 | 62500 | 0.02717 | 0.30000 | 0.06604 | 0.00012476 | 0.99736370 | SEA UFCHIN UNIDENT |
| 87 | 71753 | 0.02382 | 0.00000 | 0.05955 | 0.00010740 | 0.95749311 | PYRULOFUSUS deforimis |
| ce | 66000 | 0.02242 | 0.05316 | 0.04269 | 0.04010526 | 0.99759837 | SHFIMP UNIDENT |
| 89 | 66020 | 0.02202 | 0.00000 | 0.04824 | 0.00010112 | 0.99769947 | PaNDalus jp |
| 90 | 20100 | 0.02178 | 0.100000 | 0.04485 | 0.00010000 | $0.9971994 \%$ | RUNOUIL UNIDFNT |
| 91 | 9euto | 0.02063 | 0.00000 | 0.04326 | 0.00009473 | $0.997 E 9422$ | STYELA SP |
| 92 | 21463 | 0.01773 | 0.00000 | 0.03971 | 0.00008140 | C. 99797562 | PACIFIC SPINY LUMPSUCKER |
| 93 | $215+2$ | 0.01709 | $0.0050 ?$ | 0.02) 0 -9 | 0.0000784 | 0.99EJS409 | PACIFIC SANDFISH |
| 94 | 40500 | 0.01559 | 0.00367 | 0.02931 | 0.00007617 | 0.99813027 | JELLYFISH UNIDENT |
| 95 | 69035 | 0.01607 | 0.00000 | 0.03649 | 0.00007381 | 0.99820407 | PAGURUS SP |
| 96 | 72755 | 0.01362 | 0.00117 | 0.03020 | 0.00007202 | 0.99627609 | BUCEINUM POLARE |
| 97 | 71756 | 0.01534 | 0.00500 | 0.02569 | 0.00007045 | 0.99834654 | VCLUTGPSIUS FRAGILIS |
| 96 | 21340 | 0.02485 | 0.00227 | 0.02742 | 0.00000621 | D. 9 9E41475 | BLACKFIN SCULPIN |
| 99 | 21110 | 0.01452 | 0.00823 | 0.02082 | 0.00006669 | 0.99848143 | PACIFIC HERRING |
| 100 | 11772 | 0.01450 | 0.00805 | 0.02095 | 0.00006657 | 0.99854802 | BERINGIUS BEFINGII |
| 101 | 71891 | 0.01441 | 0.00595 | 0.02288 | 0.00006619 | 0.99861421 | PLICIfusus kruyeri |
| 102 | 69520 | 0.01392 | 0.00000 | 0.03153 | 0.00006392 | 0.99867813 | HYAS SP |
| 103 | 21921 | 0.01380 | 0.00900 | 0.02840 | 0.00006338 | 0.99874150 | ATKA Mackefel |
| 104 | E1355 | 0.01248 | 0.00449 | 0.02046 | 0.00005723 | 0.99879880 | PTERASTER OBSCURUS |
| 103 | 21555 | . 0.01127 | 0.00543 | 0.01712 | 0.00005177 | 0.99845056 | RIBBED SCULPIN |
| 106 | 71754 | 0.91110 | 0.100000 | 0.02753 | 0.00005098 | 0.99890154 | praulofusus ip |
| 107 | 20006 | 0.01203 | 0.00378 | 0.01827 | 0.00005063 | 0.99895218 | SAHBACK POACHER |


| RANK | SPECIES | mean cpue (Kû/Ha) | 93 PERCE *--CDNFIDENCE | $\begin{aligned} & \text { NTIMITS——.... } \\ & \text { LIMI } \end{aligned}$ | PROPORTICN | cumulative PROPDFTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 108 | 08578 | 1).0:4, 6 | 0.00117 | 0.01776 | 0.00004805 | 0.79900022 | HYAS CRAB (SHAHP SPINED) |
| 107 | 12531 | 0.01027 | 0.00000 | 0.02634 | 0.00004114 | 0.99904736 | Mafigailites sp |
| 110 | 43042 | 0.01026 | 0.00262 | 0.01790 | 0.00004711 | 0.99909447 | tealia crassicornis |
| 112 | 二3EO6 | $0.00+75$ | U.1)0663 | 0.01328 | 0.00004571 | 0.99914018 | SNAKE PGICKLEBACK |
| 112 | 79000 | 0.00909 | 0.00173 | 0.01805 | 0.00004541 | 0.99918554 | SQUID UNIDENT |
| 113 | 21348 | 0. 00760 | 0.00003 | 0.02132 | 0.00004499 | 0.99723058 | BUTTEKFLY SCULPIN |
| 114 | 00420 | 0. 009740 | 0.00000 | 0.02498 | 0.00004316 | 0.99927573 | BIG SnATE |
| 115 | 98300 | 0.00883 | 0.00163 | 0.01604 | 0.00004050 | 0.99731430 | COMPDUND ASCIDIAN UNIDENT |
| 116 | 10270 | 0.03831 | 0.00000 | 0.02210 | 0.00003818 | 0.99935247 | BUTTEA SOLE |
| 117 | 75605 | 0.00308 | 0.00000 | 0.02147 | 0.00003710 | 0.99938957 | PCDODESNUS SP |
| 110 | -1010 | 0.09775 | 0.00322 | 0.012 á | 0.00003050 | 0.99942607 | NUDI Branch uni dfnt |
| 117 | E0S90 | 0.907 E9 | 0.000000 | 0.02098 | D. 00003624 | 0.99946231 | LEPTASTERIAS POLARIS |
| 120 | 71961 | 0.00683 | $0.0035:$ | 0.01015 | 0.00003135 | 0.99949367 | CLINOPEGMA (ANCISTROLEPIS) NAGNA |
| 121 | 30060 | 0.0 .3649 | 9.03059 | 0.01240 | $0.000029 E 2$ | 0.99952346 | PACIFIC DCEAN PEFCH |
| 122 | 75284 | 0.00502 | 0.00045 | 0.00959 | 0.00002305 | 0.99954653 | SERRIPES SP |
| 123 | 23000 | 0.00497 | 0.00000 | 0.01174 | 0.00002280 | 0.99956933 | PKICKLEBACK UNIDFNT |
| 124 | 75000 | 0.00470 | 0.00000 | 0.01235 | $0.9000215 \%$ | 0.99959092 | PODODESMJS MACROSCHISMA |
| 125 | 42000 | 0.00448 | 0.00000 | 0.01054 | 0.00002058 | 0.97961150 | SEA PEN UNIDENT |
| 126 | 72752 | 0.00427 | 0.09116 | 0.00737 | 0.00001753 | 0.99963107 | SILKY WHFLK |
| 127 | 69001 | 0.00400 | 0.00010 | $0.00789$ | .0.00001635 | 0.99904944 | LABIDLCCHIRUS (PAGURUS) SPLENDESCENS |
| -128 | 85000 | 0.00345 | 0.00030 | 0.00310 | 0.00001584 | 0.99965526 | SFA CUCUMBFF UNIDF.NT |
| 129 | 24001 | 9.100334 | 0.90000 | 0.00745 | 0.00001532 | 0.99968060 | PFOWFISH |
| 1130 | 71835 | 0.00324 | 0.00185 | 0.00463 | 0.00001488 | 0.99969547 | NEPTUNEA 3 CREALIS |
| 131 | 20050 | 0.00318 | 7.00253 | 0.00383 | 0.00001459 | 0.99971006 | ALEUTIAN ALLIGATORFISH |
| 132 | 81360 | 0.00263 | 0.00000 | 0.00574 | 0.00001207 | 0.99982213 | DIPLOPTERASTER MULTIPES |
| 433 | 75286 | . 0.00259 | 0.00000 | 0.00659 | 7.00001188 | 0.99973401 | SEREIPES LAPFROUSII |
| 134 | 61870 | 9.03258 | 0.10000 | 0.09687 | D. 2400118 t | 0.99974588 | DIPSACASTER BOREALIS |
| 135 | 60611 | 0.00251 | 0.00169 | 0.00334 | 0.00001154 | 0.99735741 | ARGIS LAR |

Table B-1.--Continued.

| Rank | SPECIES | MEAN CPUE (KG/HA) | 90 PEf *---CONFIOENC | $\begin{aligned} & \text { NTI } \\ & \text { LIHITS———. } \end{aligned}$ | PROPORTI ON | Cumulative <br> PRIPDRTIGN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 236 | 22200 | 0. 00246 | 0.00030 | 0.00654 | 0.00001132 | 0.99916872 | BLOTCHED SNAILFISH |
| 137 | 6878: | 0.40227 | 0.0u00u | 0.00497 | 0.00001041 | 0.99977914 | telmejsuj cras |
| 138 | 69070 | C. 00214 | 0.00000 | 0.00344 | 0.00000982 | 0.99978876 | Pagurus confragosus |
| 131 | 66045 | 0.00208 | 10.00052 | 13.043364 | 0.00000955 | 0.99979851 | HUMPY SHFIMP |
| 140 | 20000 | 0.00202 | 0.00037 | 0.00366 | 0.00000926 | 0.99980171 | POACHER UNIDENT |
| 141 | 15110 | ¢. Dus 90 | 0.100000 | 0.00504 | 0.00000811 | $0.999 E 164 t$ | SPISULA SP |
| 142 | 75285 | D. NJIE5 | 0.00011 | 0.00359 | 0.00000851 | 0.99982498 | Greenlano cocile |
| 243 | $8 \cos 0$ | 0.00178 | 0.00000 | 0.00473 | D. 00000817 | 0.99983315 | Evasterias sp |
| 144 | 21331 | 0.00176 | 0.10117 | 0.00235 | 0.00000607 | 9.99944122 | Aftediellus Sp |
| 145 | 68510 | 0.00175 | 0.00065 | 0.00286 | 0.00000006 | 0.99984938 | DECORATOR CRAB |
| 146 | 56300 | 0.00155 | 0.03098 | 0.00212 | 0.00003712 | 0.99785640 | SCALFGOEM UNIDFNT |
| 147 | 66500 | U.10U142 | 0.00052 | 0.00232 | 0.00000652 | 0.99986292 | CRANGONID SHRIMP UNIDENT |
| 143 | 82315 | 0.00136 | 0.00000 | 0.00298 | 0.00000623 | 0.99986915 | PJERASIER TESSELATUS |
| $14 y$ | 71774 | 0.01131 | 0.00000 | 0.00348 | 0.00000601 | 0.99967516 | BF.RINGIUS STIMPSONI |
| 150 | 75111 | 0.90125 | 0.00049 | 0.00202 | 0.00000576 | 0.99988092 | alaska surf clam |
| 151 | 66570 | $0.00: 25$ | 0.00026 | 0.00223 | 0.00000573 | 0.99788665 | ARGIS SP. |
| 152 | 74983 | 0.00117 | 0.00030 | 0.00205 | 0. 00000539 | 0.99989204 | Clinacardium ciliatur |
| 153 | 20202 | 0.00117 | 0.00046 | 0.00188 | 0.00000536 | 0.99989740 | Pacific sand lance |
| 154 | 71022 | 0.00115. | 0.00077 | 0.00153 | 0.00000528 | C. 95930268 | Slightly granched dend funotid |
| 155 | 14001 | 7.90107 | 0.75050 | 0.010164 | 0.00000491 | 0.99930759 | CLAM UNIDENT |
| 156 | 21346 | 0.00100 | 0.00000 | 0.00202 | 0.00000460 | 0.99991217 | RED IHISH LORO |
| 151 | 79020 | 0.00092 | 0.00043 | 0.00141 | 0.00000423 | 0.99791642 | ROSSIA PACIfICA |
| 156 | 43020 | 9.00989 | 0.00000 | 0.00236 | 0.00000409 | 0.99992051 | METGIDIUM SENILE |
| 159 | 60200 | 0.00039 | 0.00000 | 0.00236 | 0.00000409 | 0.99992459 | Lethasterias Nanimensis |
| 160 | 91020 | 0.00082 | 0.70000 | 0.00217 | 0.00000375 | 0.99732834 | SUBERITES DOMUNCULA |
| 161 | 63122 | 0.00030 | 0.03000 | 0.00186 | 0.00000321 | 0.99993155 | ELASSOCHIFUS CAYIMANUS |
| 162 | ; 524. | 0.00064 | 0.00019 | 0.00110 | 0.00000294 | 0.99993447 | MaCOMA SP |
| 163 | 81310 | 0.00063 | 0.00000 | 0.00167 | 0.00000288 | 0.99993736 | PTERASTEF SP |

Table B-1.--Continued.

| Rank | SPECIES | MËAN CPuE (KG/:44) | 9) PERCENT |  | PROPITIICH | CUMULATIVE PROPDHTION | hame |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | CONfide've | MI Tj--... |  |  |  |
| 164 | 20010 | 0. DUVE 2 | 3.00.728 | 0.1109000 | 0.0000128: | T | glackfin poachfn |
| 165 | 20060 | n. 04.)59 | 0.11019 | 0.00110 | 0.101010nc73 | $0.999 \times 4295$ | hafty poichis |
| 166 | 21360 | 0.00357 | 0.00000 | 0.00152 | 0.00000262 | 0.99994557 | 3kightielly sculpin |
| i 67 | 72758 | 1). 0.0056 | - 0.00006 | 0.00101 | 0.70000241 | $0.999 y 4603$ | auccinum clacialf |
| 16 E | 74100 | 10.00092 | 0.3u00) | 0.10110 | 0.00000241 | C.99995044 | Scallap unident |
| 169 | 72750 | 0.00051 | 0.90021 | 0.00080 | 0.00000233 | 0.9999527i | guciinum solenum |
| 170 | c100」 | 0.00050 | c. 00000 | 0.00115 | 0.00000232 | C. $949 \times 5508$ | Sulastfa endfa |
| 171 | 21735 | 0.001149 | 0.00000 | 0.00130 | 0.00000225 | 0.99995733 | saffron cio |
| 172 | 30040 | 0.00047 | 0.00000 | 0.00124 | 0.00700215 | 0.99075948 | Rockfish unident |
| 173 | 21407 | 0.00040 | 0.00000 | 0.00095 | 0.00200184 | 0.99976132 | Shoktmast sculpin |
| 174 | 81525 | 0.00039 | $0.0001 ?$ | 0.00066 | 0.00000179 | 0.99996311 | Natica sp |
| i 75 | 75281 | 0.00039 | 0.00015 | 0.00067 | 0.00000179 | 0.99976489 | clinocardium sp |
| 276 | 71760 | 0.0 .2038 | 0.00000 | 0.00086 | 0.00001171 | 0.97996666 | volutupsius castaideus |
| 171 | 71540 | 0.00037 | 0.00010 | 0.00065 | 0.00000172 | 0.99996838 | SLIPPER Shell |
| 178 | 11530 | 0.00337 | 0.00014 | 0.00061 | 0.00000172 | 0.99997010 | natica clausa |
| 17\% | 71580 | n. 010037 | 0.00018 | 0.00055 | 0.00n00269 | 0.99797179 | Polinicfs pallion |
| 180 | 20001 | 0.00033 | 0.00000 | 0.00087 | 0.00000150 | 0.99997328 | rubendse peacher |
| 481 | 21405 | 0. 0.0033 | 0.00000 | 0.00071 | 0.0000150 | 0.9594747 t | EyfShade sculpin |
| 162 | 81072 | 0.00030 | 10.00000 | 0.00065 | 0.00000130 | 0.99997616 | Cfosiaster borealis |
| 193 | 59100 | 0.00029 | 0.00005 | 0.00052 | 0.00000131 | 0.99997148 | LeECh UNTdent |
| 184 | 20055 | 0.0032 E | 0.00000 | 0.00061 | 0.00000127 | 0.99947877 | Smooth alligatomfish |
| 185 | 63110 | 0.00027 | $0.00 n 00$ | 0.001171 | 0.00000123 | 0.99997999 | elassochiaus tenuinanus |
| 186 | 43010 | 0.00226 | 0.00005 | 0.00048 | 0.00000120 | 0.99992ily | metrioius sp |
| 167 | 21397 | 0.00024 | 0.00000 | 0.00056 | 0.00000112 | 0.99988231 | CRESted Sculpin |
| 183 | 23805 | 0.00021 | 0.00000 | 3.0004 ! | 0.00000098 | C. 99998329 | dauago shaniy |
| 189 | 21030 | 0.00021 | $0.0090: *$ | 0.100040 | 0.00090095 | 0.99998424 | diomedfs* taiton |
| 190 | 21726 | 0.00020 | 0.00000 | 0.00040 | 0.00000050 | 0.99998515 | colus spirybergensis |
| 191 | 35266 | 0.00020 | 0.00000 | 0.00052 | 0.00000090 | 0.99998605 | pacific zazor clam |


| RANK | SPSCIES | MEAN CPUF (KG/H1) | 90 PEfCE <br> *---CONFIDENCE | $\begin{aligned} & \text { ENf } \\ & \text { LIMITS---* } \end{aligned}$ | PROPORTI ON | cumulative <br> PRCPORTION | NaME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 192 | 7498: | 0.00019 | 0.00000 | 0.00050 | 0.000000 EF | 0.99976692 | COCKLE UNIDENT |
| 193 | 752:1 | i). UiJu18 | 0.100000 | 11.00047 | 0.00009082 | 0.99978713 | TELLINA SP |
| 194 | 71710 | 0.00017 | 0.0000 ! | 0.00033 | 0.00000074 | 0.99998852 | COLUS SP |
| 195 | 72305 | 0.000:7 | 0.000 .71 | 0.00033 | D.00000076 | D. 99998930 | TKICHOTRIPJS BICAEINATA |
| 190 | 65000 | 0.00017 | 0.00000 | 0.00045 | 0.00000078 | 0.99999008 | 3ARNACLE UNIDENT |
| 173 | 1 1754 | 0.00016 | 0.00000 | 0.00035 | 0.00000074 | 0.99999082 | VOLITOPSIUS MIDOFNDORFFII |
| 290 | 72790 | 0.01016 | O. DUD.נ" | 0.00042 | 0.00000073 | 0.99979155 | afctomelon (bofetomelon) sfearnsil |
| 199 | 80540 | 0.00015 | 0.00000 | 0.00030 | 0.00000070 | 0.99999225 | HENRICIA SP |
| 200 | 7 ¢\% 5 | 0.001913 | D.00000 | 0.00023 | 0. 00000061 | 0.99999296 | LYGE. WHELK |
| 201 | 71722 | 0.00013 | 0.00001 | 0.00025 | 0.00000060 | 0.99999346 | COLUS HYPOLISPUS |
| 202 | 72063 | 0.00013 | 0.00000 | $0.0002 \%$ | D. 0u00vose | 0.99799404 | AFORIA (LEUCOSYRINX) CIFCINATA |
| 203 | 23055 | 0.03013 | 0.00000 | 0.00033 | 0.00000058 | 0.99979461 | RAINBON SMELT |
| 204 | 71731 | 0.00012 | 0.00001 | 0.00024 | 0.00000057 | 0.99999519 | COLUS Halli |
| C05 | 23641 | 0.00012 | 0.00000 | 0.00033 | 0.00000056 | 0.99999575 | decorated hafbonne.t |
| 206 | E1340 | 0.00011 | 0.00000 | 0.00028 | 0.00000049 | 0.99799623 | Pteraster tesselatus arcuatus |
| $20 \%$ | 72575 | 0.000:0 | $\therefore 0.00000$ | 0.00022 | 0.00000047 | 0.99797670 | POLINICES SP |
| 202 | 75205 | 0.00710 | 0.00000 | 0.00026 | 0.90300045 | 0.99999715 | GFEAT LLASKAN TELLIN |
| 209 | 95000 | 0.00009 | 0.00000 . | 0.00024 | 0.00000041 | 0.99999756 | gRYOTOAN UNIDENT |
| 210 | e 0 \% 20 | 0.00058 | 0.00000 | 0.00021 | 0.00000037 | 0.93949782 | CFRAMASTFA SP. |
| 211 | 66301 | 0.00002 | 0.00000 | 0.00020 | 0.00000035 | $0.999 \times 9627$ | Heptacarious sp |
| 212 | 23000 | 0.00007 | 0.00000 | 0.00018 | 0.00001033 | $0.957 \pm 9858$ | SMELT UNIDENT |
| 213 | 805) ${ }^{\text {a }}$ | 1). 010006 | 0.00000 | 0.001317 | 0.00000029 | 4.999\%9887 | LEPIASTERIAS AfCTICA |
| 214 | 74104 | 0.00006 | 0.00000 | $0.000!5$ | 0.00000027 | 0.99779914 | CHLAMYS SP |
| 215 | 72300 | 4. Du005 | 0.00000 | 0.00014 | 0.00000024 | 0.95999938 | TRICHOTFDPIDAE |
| 216 | 651100 | 0.01005 | 0.00000 | 0.00013 | 0.00000023 | 0.99999961 | goose barnacle unident |
| 217 | 23836 | 0.00004 | 0.00000 | 0.00012 | 0.00000020 | 0.99999981 | LONGSNCUT PRICKLEBACK |
| 218 | 71723 | 0. 1100064 | 0.00000 | 0.00011 | 0.00000019 | 1.00000000 | CULUS OMBFONIUS |
|  | IOTAL | 217.76985 |  |  |  |  |  |

## APPENDIX C

Population and Biomass Estimates for Principal Species of Fish

Appendix C presents estimates of population numbers and biomass in metric tons (t) for commercially important species-of demersal fish. Estimates are given by strata and for the total survey area. Strata codes corresponding to subareas (illustrated in Fig. 1) are as follows:

| Subarea | Stratum Code (s) |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| $3 N$ | 3 |
| 3 S | 7 |
| $4 N$ | 4 |
| $4 S$ | 6,11 |
| 5 | 5,10 |

Table Page
C-1. Population and biomass estimates for walleye pollock ..... 110
C-2. Population and biomass estimates for Pacific cod ..... 111
C-3. Population and biomass estimates for sablefish ..... 112
C-4. Population and biomass estimates for yellowfin sole ..... 113
C-5. Population and biomass estimates for rock sole ..... 114
C-6. Population and biomass estimates for flathead sole ..... 115
C-7. Population and biomass estimates for Alaska plaice ..... 116
C-8. Population and biomass estimates for Greenland turbot ..... 117
C-9. Population and biomass estimates for arrowtooth flounder ..... 118
C-10. Population and biomass estimates for Pacific halibut ..... 119

GIANDARD TRAWL HIDIH $=12.19230000$ METERS


CONFIDENCF LIMITS

|  | $\begin{aligned} & \text { THTAL 3IBMASS } \\ & \text { LOWEf } \end{aligned}$ | UPPER. | TOTAL PỌPUL <br> LOWER | UPPER |
| :---: | :---: | :---: | :---: | :---: |
| 80.000 PEGCENT | . 495237730 E 07 | . $266442003 E+07$ | -110348925E+11 | . $136466122 \mathrm{E}+11$ |
| 90.000 PFEKCFNT | .15506231.5F+), | . 21665i419F4:17 | . $1705584010 \mathrm{~F}+11$ | . $1412256646 E+11$ |
| 95.600 PEFCENT | . 1761350.16507 | . 2855e6652E+07 | .103226590F+11 | . $143590457 \mathrm{E}+11$ |



CONFIDENCE LIMITS

|  | rotal aiomass <br> LDNER | UPPER | $\begin{aligned} & \text { TOTAL PBPULATION } \\ & \text { LJWER UPPER } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| . | . |  |  |  |
| a0.000 PEFCENT | . $16954756>\mathrm{E}+30$ | . 460442185 ¢̈.06 | .114239852E.10 | . $164543532 E+10$ |
| 90.000 PEFCENT | .12i1y5370E+76 | . 5027 74410E+06 | -1)6960976E. 0 | . 171 - 21406 E +10 |
| 95.00) PERCENT |  |  | .1:10575E53F+10 | . $178206531 \mathrm{~F}+10$ |

```
Table C-3 .--Population and biomass estimates for sablefish.
```

STANJAND TAAWL WIDIH = 12.1920DUO: MFTFFiS

| SIRAIUM | AREA | jG. MI. | SAMPL 5 | $\begin{aligned} & \text { IOTAL } \\ & \text { HAULJ } \end{aligned}$ | haUls HITH CaTC. | hauls HITH Nulls. | $\begin{aligned} & \text { MAULS } \\ & \text { HITH } \\ & L=F \end{aligned}$ | CPUE T/KM | VABIANCF cPuE T/KM | CPue NO/AM | VAKIANCF CDUE NO/KH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 24.306. | -663i75219E.47 | 50 | 8 | 8 | 1 | 0.00121 | . 937424E-06 | 4.85657 | -130160E+U2 |
| 2 |  | 27.714. | - $500031165 \mathrm{~F}+97$ | 45 | i) | 11 | 12 | $0.91) 105$ | . 102526F-136 | 1.76909 | . 228994 L (VO |
| 3 |  | 7.309. | -205019019 $2+07$ | 21 | 1 | 1 | 0 | 0.00000 | . $850135 \mathrm{E}-11$ | 0.01607 | . $258249 \mathrm{i}-03$ |
| 4 |  | 6.521. | . 1634542895.07 | 10 | 0 | 0 | 0 | 0.00000 | 0. | 0.00000 | 0. |
| 5 |  | 6,246. | . 631 t259112E+06 | 0 | $1)$ | 0 | 0 | 0.190400 | 0. | 0.00000 | 0. |
| - |  | 5.34 E. | . 151440527E+J7 | - 11 | 1 | 1 | 0 | 0.00000 | . $111543 \mathrm{E}-10$ | 0.02454 | $.6023 a 3 E=03$ |
| 7 |  | 23.100. | . $647070032 \mathrm{E}+07$ | 5 | 4 | 4 | 2 | 0.00002 | -3507i FE-09 | 0.03600 | $.374122 E-03$ |
| 10 |  | 4,86: |  | $c$ | 0 | 0 | -0 | 0.0 .0020 | $0 .$ | 0.00030 |  |
| $11$ |  | 5.032. |  | $? 4$ | 5 | 5 | 0 | $1.00042$ | .142250E-U9 | $0.30331$ | . 1367 EEE-02 |
| TOTAL |  | 99.797. | . 280753059 E -08 | 230 | 36 | 36 | 21 |  | - . |  |  |
|  |  |  |  |  |  | . |  |  |  |  |  |
|  |  |  |  |  | ARIANCE | METHOD |  |  | VAFIANCE |  |  |
| STKATUM | MEAN | WI T | POPULITION |  | UL A TI ON | USED |  | SS r . | SIOM + S 5 |  |  |
| 1 |  | 000249 | -3324602405+09 | . 60856 | $34 \mathrm{~F}+15$ | 1 |  | 66E+J4 | .4392261045408 |  |  |
| 2 |  | 000591 | - 8E4E9t912E+07 | . 57255 | $151 E+13$ | 1 |  | 01E+04 | . 250347893 E +07 |  |  |
| 3 |  | 000181 | . 33043398 JE+05 | .1091 e | 62:E.? 0 | 1 |  | $38 E+31$ | $.359433029 \mathrm{E}+02$ |  |  |
| 4 |  | 0) 0.300 | D. | . |  | 1 | 0. |  | 0.0 | : |  |
| 5 |  | udouva | 0. | 0. |  | 1 | 0. |  | 0. |  |  |
| 6 |  | 000136 | . $309248300 \mathrm{E}+05$ | . 13634 | 307E+10 | 1 |  | 53E. 01 | . 2524690195.02 |  |  |
| 7 |  | c00585 | . $233+34497$ E* 06 | - 15994 | 32?E+! 1 | 1 |  | $63 E+03$ | -146144977F+05 |  |  |
| 10 |  | 00090u | $0 .$ | ). | - | 1 |  | - | 0 O. |  |  |
| 11. |  | $000<45$ | . 2116 ab84yt +06 | . 68308 | $460 E+10$ | , 1 |  | 54E.02 | - 9: 4 407617E+03 |  |  |
| TOIAL |  |  | -425725827E409 | . 61431 | 6B2E+! 5 |  |  | 21E+15 | .465012834E+0t |  |  |
| EFFE | ctive | D. F. $=$ | 50.93047 |  |  |  |  |  |  |  |  |

C TNFIDENCE LIMITS

| B0. 000 | PERCENT | . 4 53904778E+04 | . $2255815655+05$ | .203639913E+08 | . 7479117 -1E+08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 910.000 | PEFCENT | . $23214 n=0$ E $5+4$. | . 25155556 ? 7 + 05 | - ग5i29602F+n6 | - $24: 500448 F+3 E$ |
| 95. 90 | Pefcent | .042452j5j5+i2 | . 274127611$) t+25$ | 0. | . $924035738 E+08$ |



Table C-5.--Population and biomass estimates for rock sole

STANOARD FRAGL HIOTH $=12.19200000$ METERS


CONFIDENCE LIMITS

TOTAL 3IOMASS T

UP PER
TOTAL POPULATION
LOHER
UPPER

| $.739554253 F+09$ | - $874373979 E+09$ |
| :--- | :--- |
| $.1769441735+09$ | - $886484060 E+79$ |
| $.153636376 F+09$ | . $69 F 271856 F+09$ |

20.00U PERCENT
70.000 PERCENT
35.0.JU PFKCENT
$.147108203 E+106$
-150143032E.06 $.1303766 ?+5+166$
$.2084301345+06$
. 217294405E406
. 225061714f+1)6

```
Table C-6.--Population and biomass estimates for flathead sole.
```

STANDARO JRAWL WIDIH＝ 22.19200000 METERS

$.154767063 \mathrm{~F}+05$
-4b1175610E+05
42)553565E404
$.316414633 E+03$
2) 2) $042087 E+03$
-926尹31767Fti) 4
$.944326533 E+03$

- 505 - 65 Q72E+04
. $E 53651602 \mathrm{E}+05$
$-152035+29 F+08$
$.526102850 E+02$
. $114315689 \mathrm{E}+07$
1515113475+0
- 52253509 O
$\begin{aligned} & .63044 E 311 E \cdot 07 \\ & .1590503395+06\end{aligned}$
.7685 iع5545．07
$. \varepsilon 351474555+08$

EFFECTIVE D．F．＝02．67166

CONFIDENCF LIMITS

|  |  | CONFIDENCF LIMITS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { TOTAL } 3 \text { IOMASS } \\ \text { LDWFK } \end{gathered}$ | T UPPF．F | $\begin{aligned} & \text { TOTAL PDPULATION } \\ & \text { LOWCK } \end{aligned}$ | UPPER |
| 80.000 | PFFCCENT | ． 737905265705 | － $7737919395+05$ | －376745392F＋才9 | ．423646357E＊39 |
| 70.000 | PEACENT | ． 704055142 Cl 05 | ． $100764746 i+06$ | ． $3722746025+09$ | ． 430 i17128E＋09 |
| 93.030 | PEACENT | ． 674430053 E 05 | －1035 $22315 E+06$ | －356604610E＋！19 | ．455183120E＋1）9 |

Table C-7.--Population and biomass estimates for Alaska plaice.

STANDARD TRAML WIDIH $=12.19200009$ METERS


COMFIOFNCF LIMITS

| TOTAL | T |  | JOTAL | Pgrulatidan |
| :---: | :---: | :---: | :---: | :---: |
| roral | T | UPPER |  | LOWFF |

LONER UPPER

LDWFF
UPPF.R
80.000 PERCENT 9U. UNU PERCEN 93.000 PERCENI

| - 5109034548 COG | - $219552036 E+06$ |
| :---: | :---: |
| . 3 3036931E0,5 | - 2 66 ¢551p:+1) |
| .719325u!51.05 |  |


| . $2435659035+09$ | - 382987816F+09 |
| :---: | :---: |
|  | . $405133772 r+09$ |
| . 20070と1才if.0) | .42'5u67602t009 |

Table C-8.--Population and biomass estimates for Greenland turbot.

STaNDARD TRAHL HIDTH $=22.29200000$ METERS


CONFIDENCE LIMITS

TOTAL JIONASS T
LOWF

UPPER
TOTAL POPUL.ATION
LOWFF
UPPER
20.00J PEFCENT 90.000 PERCENI Y5.00J PERCENT

- $3713564785+05$ $.939318036 \mathrm{E}+05$ . 911 206,4CE+05
$.119122943 F+06$ -122320757E+0́
$.125137536 \mathrm{E}+06$

| $.684572735 E+09$ | $.893449506 E+09$ |
| :--- | :--- |
| $.653719563 E+09$ | $.924302578 E+09$ |
| $.626214737 E+09$ | $.951807444 E+09$ |

```
Table C-9.--Population and biomass estimates for arrowtooth flounder.
```

STANDARD TRAAL WIDIH = 1?.19?00000 METEFS


SIANDARD TRAHL HIDIH = 12.1 YOODOOH METEFS

confldence limits

|  | $\begin{aligned} & \text { TOTAL } 3 \text { IUAASS } \\ & \text { LOWFR } \end{aligned}$ | T UPPERR | $\begin{aligned} & \text { TOTAL POPUL } \\ & \text { LTWER } \end{aligned}$ | UPPER |
| :---: | :---: | :---: | :---: | :---: |
| -0.300 PERCENT | . 144557 3! JEP05 | . 2110953355.05 | .112639182E.08 | . $156466389 E+08$ |
| H. UDU PEKCENT | .134034632F+05 | . $2206775135+05$ | .170359220F*06 | -162346352F+1) |
| W5.dりJ PERCENT | -1205と $7422 E+05$ | . $229064.920 c+05$ | .150876146c*09 | -16d229425E*08 |

## APPENDIX D

        Estimates of Population Numbers by Sex and Size Group
    for Principal Species of Fish
    Appendix D is a computer listing of the estimated population numbers by
    1 cm size and sex groups of commercially important fish species within the
1978 survey area.
TablePage
D-1. Population estimates by sex and size group for walleye pollock ..... 121
D-2. Population estimates by sex and size group for Pacific cod ..... 123
D-3. Population estimates by sex and size group for sablefish. ..... 125
D-4. Population estimates by sex and size group for yellowfin sole ..... 126
D-5. Population estimates by sex and size group for rock sole. ..... 127
D-6. Population estimates by sex and size group for flathead sole ..... 128
D-7. Population estimates by sex and size group for Alaska plaice ..... 130
D-8. Population estimates by sex and size group for Greenland turbot ..... 131
D-9. Population estimates by sex and size group for arrowtooth flounder ..... 133
D-10. Population estimates by sex and size group for Pacific halibut ..... 135
total all stfata
SPECIES 21740 THEEAGSA Chalcogramma
walleye polljck

| LENGIH（HiA） | ＊＊Males＊＊＊ | ＊females＊＊ | ＊UiNSEXED＊＊ | ＊＊TOTAL＊＊＊ | PREPORTION | cumulative． <br> PROPORIION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50.0 | 0. | 0. | ． 2785525150.06 | －2\％E552515E＋U6 | 0.00002 | 0.00002 |
| 6u． 0 | 0. | $1)$. | ． $455119955 \mathrm{~F}+06$ |  | $0.0000 \cdot$ | 0.00000 |
| 7v．u | ． $104100654 \mathrm{ra}^{-100}$ | $1)$. | － $282 \mathrm{c} 3720 \mathrm{Jc}+\mathrm{c} 5$ | ． $252450354 \mathrm{E}+06$ | 0.00002 | 0.00005 |
| 90.0 |  | 0. | ． $478313358 \mathrm{c}+05$ | ．17！718009E－06 | 0.00001 | 0.00007 |
| 100.0 | －2：502ódose 6 Ci | ． 407 gdi $42 E+05$ | －प02214502E＋U7 | －112：92036E＋08 | 0.00031 | 0.00100 |
| 110.0 |  | －14ċ93591F＋0E | ．321742119F＋49 | － 355175346 EV 9 | 0.02676 | 0.02978 |
| 120.0 | ．104679107L＋03 | ． $002034430+08$ | ． 84338 dosce． 09 | ．100344159E．10 | 0.08172 | 0.11150 |
| 130.0 | ．13324J759E＋0） | ．84＇00980eEtoz | ． $100536263 E+10$ | －1223E9247E＋10 | 0.09913 | 0.21069 |
| 140.0 | －16：U万ó334F．0？ | －115S4＞627Ftuy | －Eu6）41Eaffou9 | ． $149415766 F+10$ | 0.0 Ote5 | 0．29E53 |
| 150.0 | － 1 SEuEうこく0E＋0． | －130i41736－09 | ． 416156959 C －09 | $.705583915 E-09$ | 0.05718 | 0.35570 |
| 160.0 | ． $100232539=0.9$ | ． 1009927656.09 | ．229078331E＋03 | $.430354334 E+07$ | 0.03427 | 0． 3 j051 |
| 170.0 |  |  | －E31505！25E＋0） | ． 203128745 F 009 | 0.01640 | 0.400703 |
| 1 18．0 | － 4 E ¢ $225402 \mathrm{E}+\mathrm{j} \mathrm{f}$ |  | ．442：42354亡＋08 | $\because 133383263 \mathrm{E}+09$ | 0.01081 | 0.41764 |
| 190.0 | ． $560003287 t$－ 0 d | ． 525614853 L － 08 | ．100245733E＊08 | .1185769085109 | 0.00951 | 0.42745 |
| 200.0 |  | － $0172467<4 \mathrm{~F}+\mathrm{dE}$ | －： $142342 \mathrm{~S} 5 \mathrm{~F}+1) 8$ | ． 136397142 F 09 | 0.01115 | $0.6385)$ |
| 210.0 | － $812 \leq 56$ 9olc 6 （06 | ． 637161907 ¢＋O | － $101226847 E+08$ | ． $155064779 \mathrm{E}+09$ | 0.01257 | 0.45107 |
| 220．0 |  | －123335023E409 | ． 83514 ＋116E407 | ． $244493131 E+07$ | $0.01 \pm \leq 1$ | 0.4708 E |
| 2360 | －16235こ533i＋4． | $\therefore$－37735408F＋09 | ． $152 \mathrm{ELJ26EF}+)$. | －3u16163E4E＋09 | 0.022444 | 0.43532 |
| 240.0 | ． 2025058 SE 503 | ． $2025574245+09$ | ． 239335 2JEE．07 | ． $407563592 \mathrm{E} \cdot 07$ | 0.03333 | 0.528 .35 |
| 250.0 | －1）う5950iectog | －1 P2964505E＋09 |  | ． $36960448 \mathrm{EF}+1) \mathrm{y}$ | 0.03151 | 0． 55972 |
| $260.0$ | －16） $3+6.5 c 9 \mathrm{~F}+49$ |  | ． 7 U5：504voE＋i）6 | －327585713E＊09 | 0.02658 | 0.58650 |
| $27 \mathrm{J.0}$ | －161＞47323E＋09 | －1：5965857E＋39 | － $504487201 E 006$ | －2reti7708E．09 | 0.02256 | $0.60900^{\circ}$ |
|  | －1262y3336E＋G才 |  | ． $35 i 12 \mathrm{c} 2=3 \mathrm{~F}+36$ | ． $2271866255+199$ | 0.11841 | 0.62747 |
| $290.0$ | －1010144フ7E1J7 | ． 1654747 c7上＋09 | － $2352732 E 4 E+06$ | ． $213345539 \mathrm{c}+09$ | 0.01729 | 0.64475 |
| 300.0 | ．1472073625403 | ．i $133393126+09$ | － $316444515 \mathrm{E}+06$ | ． $260946139 E+09$ | 0.02115 | 0.60591 |
| 310.0 | －106－3255x＋11\％ | －120175443F＋03 | － $48+8175$ ग0Eta6 | －2E75］0EI 9E＋0才 | 0.022330 | 0.68929 |
| 320.0 | ．17201才77EE＋U9 |  | $.2747645315+06$ | $\because 329500309 \mathrm{E} \cdot 09$ | 0.02670 | 0.71570 |
| 330.0 | － 203690664 EVOF | －164643135E＋09 | ． $4463405432+06$ | ． $372970145 E+189$ | 0．0．3022 | 0.74613 |
| 340.0 | ． 223274 ころF＋0才 | －191091109F＋J9 | ． 5 Sc2 $25545 F+06$ | $.415563350 E+09$ | 0.03357 | 0.779 EJ |
| 359.0 | ． $2502435612+3)$ | $\because 1770$ e37： 5 C－0 | － $316^{2} 44515 \mathrm{SE}$－ 06 | ． $427644241 E+0)$ | 0.03455 | 0.81443 |
| 360.0 | ． 220023564.07 |  | ． $3161445 i 56+06$ | ． $366532533 \mathrm{~F}+3 \mathrm{3}$ | 0.02975 | 0.84415 |
| 571．0 | －212く2三612F4j\％ | ． $140279539 \mathrm{Cl}+9$ | ． $3165445: 55+06$ | ． $3525250365+09$ | 0.02859 | 0．e7274 |
| 380.0 | ．101306333E＋0） | ．113735006E＋09 | ． $239234046 E+06$ | －2）5480672E＋09 | 0.02232 | 0.39507 |
| $3 \times 1) .0$ | －12i462ilsictuo | － 04 ¢ $102024 \mathrm{~F}+0 \mathrm{E}$ | －107732？：7F＋06 | － $222381986 \mathrm{~F}+47$ | 0.01802 | 0.91309 |
| 40100 | －t595729\％ 7 ctys |  | ． 57858893 IET＋06 | ． 162734994 E゙＋09 | 0.01319 | 0.92627 |
| 410．0 | ． $603546354 \mathrm{E}+\mathrm{Ca}$ | －52i－9EJ93E4ug | －4840！15＇CE＋ 06 | －11355尹223E＋0才 | 0.00920 | 0.93548 |
| 420.6 |  |  |  | －E5）325252F－UE | 0.00635 | 0.94242 |
| 4315.0 | － $279105436 \mathrm{c}+\mathrm{J}$ | －239068449E＋08 | ． 94341607 CL＊ 06 | ． $589468046 E+08$ | 0.00418 | 0.94720 |
| 440.0 | － 24 ）： 763 996＋03 | － 202510658 E －08 | ． $120506049 E+07$ | ． $463737642 E+08$ | 0.00370 | D． 75076 |
| 450.4 | －327065448F＋08 | － $21355425.95+0{ }^{\text {a }}$ | －109155633F＋07 | ． $543244165 E+106$ | 0.00440 | 0.35536 |
| 460.0 | －37740140！E＋02 | － $20449307: 64$ | －11850y701E＋07 | ． 593785548508 | 0．00481 | 0.76017 |
| 470.0 | －3316317＋iご可 |  | － $105+10716 \pm+07$ | －5442323E1E＋0E | 0.00451 | 0.76458 |
| 480.0 |  |  |  | ． 538 E 35497E＋08 | 0.20437 | 0.96895 |


| TOTAL ALL STRATA |  |
| ---: | :--- |
| SPECIES 21740 | THERAGRA CHALCOGRAMMA |
|  | WALLEYE POLLOCK |

LENGIH（HH）
470.0
500.0
510.0
520.0
530.0
540.0
550.0
560.0
570.0
540.0
$5 \geqslant 0.0$
600.0
620.0
620.0
630.0
640.0
650.0
660.0
670.0
680.0
690.0
700.0
710.0
720.0
730.0
740.0
750.0
760.0
$E 00.0$

 0.
0.
0.
0.
0.
－Females
260663
215ゝ20060ヶ 0
 2700667 E5E 108 265347326E
 － －：O7 063972E＋0 －1：5756953E＋0E 757 764424E＋07 $.6: 0667342 E+07$ －458gE7903E＋07 －6512Ey173F．u 324539955E＋07 324311 C55E＋J7 ． $309053520 E+07$ －1723É2UEF＊07 $151054851 E+07$ － $1325050035+47$ －147077593E＋07 －65ib2E453E．06 －764736307E＋06 とも7こ642ヶ3E＋のó －42告5上18sc＋J5 367166757F＋96
 －シャーアコ25ア540 1327 $.!3271033 E E+166$
$.!650230 i 9 E+06$
－335922613E4io
－ 1705 93895E＋0 －1127250U2E＋07 $8+1+2471 i 5+06$ 594549007 0 0 －594549807E00
 0.

32919665ic．06 $29727+100^{4 E}+0 \mathrm{E}$ $1971322175+06$ －356304852E＊0 0.
0.
0.
0.

109732217E•06 0.
$109732717 \mathrm{~F}+6$
0.

1）．
0.
0.
0.
0.
0.
0.
0.


| PROPOFTION | CUMULATIVE PROPORIIUN |
| :---: | :---: |
| 0.00457 | 0.31352 |
| 0.00427 | 0.98716 |
| 0.00357 | 0．9Et15 |
| 0.00347 | 0．98462 |
| 0.100343 | $0.9 E 805$ |
| 0.00234 | 0.91044 |
| 0.00971 | 0.99265 |
| $0.0015 \%$ | 0.97314 |
| 0.00140 | 0.99514 |
| 0.00032 | 0.94595 |
| 0.00053 | 0． $9+657$ |
| 0.00057 | 0.97715 |
| 0.00016 | 0．9）19？ |
| 0.00043 | 0．97E3： |
| 0.00031 | 0.97871 |
| 0.00041 | $0.9+912$ |
| 0.00015 | 0.97928 |
| 0.00014 | 0.39942 |
| 0.00014 | 0．9j955 |
| 0.00015 | 0.99971 |
| 0.00005 | 0.99976 |
| 9.00007 | 0.97925 |
| 0.00007 | 0.99990 |
| 0.00001 | 0.93991 |
| 0.00003 | 0.99994 |
| 0.00002 | 0.99996 |
| （0．00031 | 0.79998 |
| 0.011011 | 0.79999 |
| 0.00002 | 1.00000 |

Table D－2 ．－－Population estimates by sex and size group for Pacific cod．
total all siriata
SPECJES 21720 GADUS MACROCEPHALUS
PACIFIC COD
LFNGIH（MA）
100.0
120.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
130.0
260.0
210.0
220.0
230.0
240.0
250.0
200.0
270.0
280.0
270.0
300.0
310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
393.0
4013.0
410.0
420.0
430.0
440.0
450.0
460.0
470.0
486.0
430.0
503.0
510.0
520.0

> * MALES *-
> $\begin{aligned} & 135253356 と+u 7 \\ & 697132086 \pi+06\end{aligned}$
> - 697132086ど06
> $-161<35100 \mathrm{E}+5$
> $\begin{aligned} & .6 \angle 5646575 E+07 \\ & .160367 E \supset 3 t+08\end{aligned}$

> -5633157712-00́
> - $742266175 F 408$
> $.674547293 \mathrm{C}+0$ d
> $.796603437 \mathrm{E}+\mathrm{vo}$
> - 51417 गQETE. 48
> -408á77545E+03
> $\begin{aligned} & -5<1034382 E+08 \\ & .291960602 F+. j r\end{aligned}$
> - 243774127 ご 103
> -1513000 4E+4E
> -114i3j115こ+6E
> $.765264483 E+07$
> - $54856 \mathrm{C} 317 \mathrm{E}+57$
> . 191122720 - 4: 17
> .14:486604E•07
> .$i 56376983 \mathrm{~F}$ i)
> $.100973707 \mathrm{E}+06$
> $.7922: 4574 \mathrm{E}+\mathrm{U5}$
> $.7565950<6 \mathrm{~F}+155$
> $.146325036 E+155$
> -632415238E+JG
> - 3JE:412j4F+1/6
$.129734014 \mathrm{t}+\dot{4}$

- $8125909765+0$ ó
. 102852947E+07
-955257129E+140
-17553576UE+J7
$.175035!13 E+67$
$.215242501 \mathrm{~F}+57$
- $1522027<3 \mathrm{c}+07$
- 241514476 [+57
-1011215629F.0
. 434222704 Eメ 07
- 30Eíd376E+0F
$\begin{aligned} & .302101376 E+07 \\ & .264<951 / 2 \%+47\end{aligned}$
.2364476 © 7 EーU

| ＊Fémales＊． <br> 0. |  |
| :---: | :---: |
| 0. |  |
|  | 5yc224674E＋4 |
|  | 33：0601996． |
| －1035EDESDr＋U6 |  |
| $\begin{aligned} & 21719667 \times 2 E+0 F \\ & .52507 \times 117 t+08 \end{aligned}$ |  |
|  |  |
| ． $10 \leq 26: 643 F \cdot 0$ ¢ |  |
| ． $750 \times 49$ P14E＋08 |  |
| ． $722657664 \mathrm{E}+0$ O |  |
|  |  |
| － 559844509 CO |  |
| ． 535920643 ctac |  |
| － 4 E ¢ $2545545+0 \%$ |  |
| －260381080t－ 08 |  |
| －2iSS263iletat |  |
| －21 3595！ 6 E5＋19 |  |
| ． 1264 32？i3E＋03 |  |
|  |  |
| ． $6113373342 \mathrm{E}+07$ |  |
| ． 6262963405406 |  |
|  |  |
| ． $275045155 i+06$ |  |
| 3. |  |
| ． $4000669345+05$ |  |
| ． $143301307 E+00$ |  |
| －：330：7547E406 |  |
| －33JU3367E＋46 |  |
| －303673167E．06 |  |
| 1i7166）34E＋17 |  |
| 373427）35F＋06 |  |
| －：520611516＋0才 |  |
| ．745U51105F＋06 |  |
| ． $102075324 E+07$ |  |
| ． $113042359 \mathrm{E}+06$ |  |
| －1504 $9035 i 5+17$ |  |
| － 243096055 －07 |  |
| ． $1606004792+07$ |  |
| －27リ514255F＋67 |  |
| ． $154645019 \mathrm{C}+07$ |  |
| $-237: 957: 45+17$- 1640504275+307 |  |
|  |  |
| $\cdot 1640504276+37$$.3306567745+07$ |  |

$-1640504275+197$
$.3310656974=+07$

| UNSEXED | －total |
| :---: | :---: |
| 0. | ．） 342503365007 |
| 1）． | －6才7132）E6F．4； 6 |
| －1171162く1こ．46 | －252i 693 0 0＋ 07 |
| ．285098525E．07 | －12417ソ530E゙＋08 |
| －70i129635F＋61 | ． $354661456 \mathrm{~F}+\mathrm{J}$ |
| ．12！043763E＋0E | ． $636794504 \mathrm{C}+0 \mathrm{~g}$ |
| －103652556E＋08 | ．119504864E4） |
| ． $616276662 F+07$ | －15）E1554FFtu9 |
| ． 266250819 －07 | ． 145212359 E －09 |
| ． $765331448 \mathrm{E}+06$ | ． $152591442 \mathrm{C+09}$ |
| ．1351231＋4F＋N6 | ．114590965E＋09 |
| － $2 \pm 2547335 \mathrm{~F}$－06 |  |
| ． 1351201 Y4E＋ 56 | －106433220E＋09 |
| ．169900259E＋46 | ． 763 U3， $595+J E$ |
| ． 449475718 Ce 06 | － $507165766 \mathrm{E}+08$ |
| － 904 ¢0： $2+3 \mathrm{~F}+15$ | ：437） $311665+08$ |
| ． 7 E5552005et＋05 | － $387915335 E+08$ |
| ． 96929 ！567E405 | ． $203978.03 \mathrm{E}+0 \mathrm{O}$ |
| ก． | ． $143537546 \mathrm{~F}+02$ |
| 0. | ． 794490062 E 07 |
| 0. | －21011623EE＋07 |
| 0. | ． $936519+0$ EF＋${ }^{\text {（1）} 6}$ |
| 0. | ． $376639203 E+06$ |
| 0. | － $792 \pm 24574 \mathrm{E}+05$ |
| 0. | －124265196E＋J宁 |
| 0. | ． $294626343 E+06$ |
| 0. | ． 765432 ćE 5 ＋1） |
| －516ER094 OE＋05 |  |
| 0. | ． 710658803 E 06 |
| 0．${ }^{-}$ |  |
| ． 516 ECOH 4 C ¢ 05 | － $1237708115+07$ |
| ก． | －534314099E407 |
| 11. | － 5100 ？ $07235+07$ |
| 0. | ． 27 E0155035＊07 |
| ． 15976320 CE ＊ 06 | － $262996 i 19 E+07$ |
| ． $2772361418+16$ | － $397456312 E+U 7$ |
| ． 211451294 E． 06 | ． 4324461 i5E゙． 07 |
| ． $1547632005+06$ | － $423 C \geqslant 12$（4E＋U） |
| ．20763E3U5E＋U6 | －169才2ら436E＋1） |
| ． 643450034506 | ．657713787E＋07 |
| －6051603i 5E＋06 | －5765731c7E＋6？ |
| －F64budg4 5etu6 | ． $535405545 E+07$ |
| ．4416982585．06 | －61147658iE＋0\％ |

－TVIAL＊＊＊ －Gu7 32かも6407 ． 25 Ci $693 \times 0 E+07$ 12417y530t＋08 $.636794504 \mathrm{C}+0 \mathrm{O}$ ． 119604064 （4） 1452123595.09 $.152591442 \mathrm{C+07}$ $114590965 E+09$ 11643アン0 ． 7 E 3 u 32759E＋UE － $507165766 \mathrm{E}+0 \mathrm{~B}$ $: 437$ I $111665+08$ $203978.03 E+0$ O $143537546 F \cdot 08$ ． $794490062 E+07$ －36510＋EF＋ $376639203 E+06$ 742 Cl4574E＋05 $294626343 E+08$ ．765432ćE5E40）
 $297+6 \pm 5+\varepsilon F+07$ $123770811 E+07$ － 334 ¹4409E407 $.27 E 015503 E+07$ － 262996 1－19E＋07 $495612 \mathrm{c}+\mathrm{J}$ 446115E＋07 $1 E 9+254385+1$ ．657713787E407 5765731çE＋し 61147658iE＋0．

| PREOPONTIJN | cumulative PROPORTION |
| :---: | :---: |
| 0.00079 | 0.03093 |
|  | 0．1014． |
| 0.00191 | 0.00331 |
| 0.0089 l | 0.01221 |
| 0.02544 | 0.03765 |
| 0.04506 | 0.00334 |
| 0.0850 .3 | 0.16927 |
| $0.100^{0} 0$ | 0.27747 |
| 0.10415 | 0.36165 |
| 0.10354 | 0.43121 |
| 1）．0 0221 | 0.57342 |
| 0.07398 | 0.64737 |
| $0.0763{ }^{\circ}$ | 0.72315 |
| 0.05618 | 0.77992 |
| 0.03653 | 0.81645 |
| 0.0314 .5 | 0.84765 |
| 0.02783 | 0.87569 |
| 0.01453 | $0.8903 ?$ |
| 0.01030 | 0.90062 |
| 0.00570 | 0.90632 |
| $0.0025:$ | 0.707 Ez |
| U．00057 | $0.9 J$ ESJ |
| 0.00027 | $0 \cdot 90871$ |
| 0.00095 | 0．90EEZ |
| 1.00039 | 0．90E91 |
| 0.00021 | $0.909: 2$ |
| 0.30055 | 0.90967 |
| 0.00050 | 0.91017 |
| 0.00051 | 0.91063 |
| 5.00214 | 0． 912 tz |
| 0.00099 | 0．91371 |
| 0.00240 | 0.91611 |
| 4.00122 | 0.91733 |
| 0．301？ | 0.91933 |
| （1．JO1E） | 0． 32121 |
| Jo00225 | 0.92406 |
| 0.00310 | 0.72710 |
| 0.00354 | 0.93029 |
| J．1）2363 | $0.943 E 3$ |
| 0.00412 | 0.94855 |
| 0.00424 | 0.95269 |
| 0.00384 | 0.95653 |
| 0.00439 | 0.76091 |

Table D－2．－－Continued．
total hll straita $\quad \begin{aligned} & \text { Species } \\ & \\ & \end{aligned}$

| LENGTH（MH） | ＊＊＊MALE5＊＊＊ | ＊Ficmales | ＊＊UNSEXED |
| :---: | :---: | :---: | :---: |
| 530.0 | －324933769E－07 |  | ． $74242 \mathrm{C} 947 \mathrm{c}+06$ |
| 540.0 | － $24544=567 E+W 7$ |  | ．903514716F．06 |
| 550.0 | －13とう5う5iSE407 | ． $210<74178 ¢+07$ | ． 577966869506 |
| 560.0 | －2＜3304 $022 \mathrm{E}+0 \mathrm{i}$ | － $232200487[+07$ | ． $761224657 E+06$ |
| 570.0 | －202b4（1）＞9E＋47 | ． $157210411 F+07$ |  |
| 580.0 | ． $140135720 E+07$ | －1651834C9E．07 | －2114512\％4こ006 |
| 590.0 | ． 1063 3o5u2Etij | ． $795720201 \mathrm{c}+1{ }^{\text {c }} 6$ | ． $2151502116+06$ |
| 6uv．0 |  |  | 1. |
| 610.0 | ． 176084005 ctu7 | －112426543c407 | ． 140276255 E． 36 |
| 620.0 |  |  | －EEOUF1612F．us |
| 63 U .0 |  | －2i6うり4E47E＋06 | －516E80940t＋05 |
| 640.0 | －10293：040E＋06 | －142－95311E＋07 | 0. |
| 650.0 | －61cy 329く2F＋0j | － $3 \times 6156050 \mathrm{~F}+06$ | ．443040806F＋U5 |
| 66u．d | －d59235551ci＊u6 | ． 404 －25575E＋06 | 0. |
| 673.0 | －31742jioie．06 | 0. | 0. |
| －E0． 0 | －3c Jiefojer＊uó | ． $266412 \leq 59 F+06$ | ． $1413296255 \mathrm{~F}+06$ |
| 690.0 | 0. | ． $97295255 \mathrm{CE}+06$ | ． 443040206505 |
| 100.0 | －361591144E＋06 | ． $114365: 40 E+0$ i | －443040506E＋U5 |
| 710.0 | －3SE109744F＋ijó | ． 4059031 （0）E +136 | － $359921746=+65$ |
| 720.0 | 0. | ． 266412950 ¢06 | 0. |
| 130.0 | 0. | － $3: 7+257975+06$ | 0. |
| 340.0 | ． $5166610740 E+寸 5$ | －3E．2d3EjuE＋36 | a）． |
| 750.0 | － 33 El $00944 E+00$ | 0. | ． $443040806 E+05$ |
| i 60.0 | －5\％2c2j701E＋0́ | －265412ESIF．06 | 0．${ }^{\text {a }}$ |
| 770.0 |  | ．516とをjaidetj5 | 0. |
| 780.0 | O． | － 2304122505406 | 0. |
| 790.0 | 4. | －62：5137；5F．06 | פ． |
| 615.0 | －106\％85617E＋06 | 0. | ． $443040806 \mathrm{E} \cdot 05$ |
| 860.0 | －516580940E＋05 | 0. | 0. |
| 900.0 | －2E6＋1 ことうけr＊vó | 0. | 0. |
| TOTAL | ． $651154736 E+09$ | ．6E7382266E409 | ． $537330525 E \cdot 08$ |



| PRCPOKTIJN | cuinulativf <br> PROPORIION |
| :---: | :---: |
| 0.00537 | 0.75578 |
| 11.0047 E | 0.97076 |
| 0.00292 | 0.91365 |
| 4.10381 | 0.91747 |
| 4．002F5 | 0.98034 |
| 0.0024 | 0.95283 |
| $0.30: 42$ | 0．HE4 42 |
| 0.00134 | 0.96565 |
| 0.00218 | 0.98784 |
| 0.00155 | 0.98937 |
| 0.00072 | $0.9 \geqslant 011$ |
| 0.00109 | $0.7 \pm 121$ |
| 0.00076 | 0.99197 |
| 0.00091 | 0.99287 |
| 0.180023 | 0.99310 |
| 0.30059 | 0.97369 |
| 0.00075 | 0.99442 |
| $1) .00113$ | D． $7 \times 554$ |
| 0.00060 | 0.99615 |
| 0.00021 | 0.79635 |
| 0.00023 | D．） 9655 |
| 0.00032 | 0.99690 |
| 0.00027 | 0.97117 |
| 0.00062 | 0．93779 |
| 0.00007 | 0.99765 |
| 0.00021 | 0.99807 |
| 0.90045 | 0.99 E）1 |
| 0.00011 | $0.9+862$ |
| （1）00．）4 | 0． $9+86{ }^{\text {a }}$ |
| 9．00021 | U．9）PET |





| LENGTH（HM） | ＊＊MALES＊＊＊ | ＊FEnales＊＊ | ＊＊ | UNSEXFD | ＊＊＊TOTAL＊＊＊ | PROPORTION | cumulative PROPORTIUV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11U．O | ．44E？！43¢2E＋06 | 0. | 0. |  | －442214392E406 | 0.00054 | 0.00054 |
| 120.0 | ．127711983E＋07 | ． 60 ！951749E．05 | 0. |  | ． $133131581 E+07$ | 0.00151 | 0.00215 |
| $13 \mathrm{SJ.U}$ |  | －914E45SE1F＋06 | 0. |  | － $533451518 F+07$ | 0.00665 | $0.0088:$ |
| 140．0 | ．1331734300 0 O | ． 465 ：110455ご407 | 0. |  | ． $1863904755^{\circ}+38$ | 0.02240 | 0.03125 |
| 150.0 | －4155720く3t＋006 | －122003735E＋U8 | 0. |  | ． $53737551 \mathrm{PE+1)} \mathrm{E}$ | 0.06451 | 0.09577 |
| 160.0 | ． $541091796 t+4{ }^{\text {c }}$ | ． $16209764 \mathrm{EF}+0 \mathrm{E}$ | 0. |  | ． 703 ： $26704 E+J 8$ | 0.0 E4う2 | 0.18031 |
| 170.0 | ． $471001762 \mathrm{E}+03$ | － 159611066 － 08 | 0. |  | ． $670412528 E+03$ | 0.08277 | 0.20350 |
| 150.0 | ． $233330364 E+C 5$ | － $204798356 ¢+08$ | 0. |  | －3FEi 2\＆ $720 \mathrm{C}+$ J8 | 1．0473 | 0.31123 |
| 193.0 | ． 92514210 PE＋47 | ． $68+550025 c+07$ | 0. |  | － $16001.3503 \mathrm{c}+0$ e | 0.01923 | 0.33045 |
| 200.0 | ．77733）1d0E＊07 | ． $534574732 \mathrm{E}+07$ | 0. |  | ．131211391E0日 | 0.01577 | $0.3 \div 623$ |
| 210.0 | ．69EvE5405E＋U7 | ． $5043975 \mathrm{e} 2 \mathrm{E}+\mathrm{J7}$ ． | 0. |  | ． 120248299508 | 0.01445 | 0．3600e |
| 22.0 | ．130071才ラ9E＋U8 | ． $568216914 E+07$ | 0. |  | ． $137493651 E+08$ | 0.02254 | 0.33322 |
| 230.0 | －1731343725＋08 | ．917977136c．07 | 0. |  | －271532586E＋09 | 0.03254 | 0.45546 |
| 240.0 | ．212：05506E＋0E |  | 0. |  | ．411734116F＊UE | 0.05021 | 0.40607 |
| 250.0 | －364．at $506 E+4$ E | ． $1336519325+0.5$ | 0. |  | －498140438E．08 | 0.05988 | 0． 52594 |
| 260.0 | －420277443E＋08 | －175：72：01E108． | 1. |  | ． $585419544 E+08$ | 0.07037 | 0.59631 |
| 270.0 | － 347 i 3 ？21if＋08 | － 1468931 二 5 E＋J8 | 0. |  | －5420259EDF．0E | 0.06515 | 0．60145 |
| $2 \mathrm{EJ.0}$ | －3587－3202E＋08 | － 16960 ¢52ご08 | 0. |  | ． 542365234 E．08 | 0.06571 | 0.72737 |
| 290.0 | － $265066652 \mathrm{E}+03$ | －193924527E＋33 | 0. |  | －4i8t71：79E＋0E | 0.05756 | $0.164 \times 3$ |
| 30U．0 | －106564273E40E | － 1855205 C5E＋9E | 11. |  | ． 349884898 （1） | 0.04205 | 0.82697 |
| 310.0 | －511135う185407 | － 2324017 d7ミ＋טe | 0. |  | ． $263515339 \mathrm{E}+08$ | 0.03408 | 0.86107 |
| 320.0 | －136890es $3 \mathrm{E}+6$（ | ． $1135255>15+08$ | 9. |  | －1E72156t0F＋08 | 0.02250 | 0.8 E 351 |
| 3310.0 | ． 7572081 ifexut | －i27 3367 E6E＋1） | 0. |  | ．134610968E＋08 | 0.01620 | 0.89977 |
| \＄40．0 | ． $403909591 E \cdot 00$ | － $182156934 \mathrm{c}+0$－ | 0. |  | ．186196030E＋08 | 0.02230 | 0.72215 |
| 350100 | ． 2 11824224E＋0¢ | ．114141942E＋JE | 9. |  | ．116t60214F40 | 0.01405 | 0.93627 |
| 360.0 | 0. | ． $150304147 \mathrm{E}+0 \mathrm{C}$ | 0. |  | －13C304147E＋08 | 0.01556 | 0.95185 |
| 37 U .0 | ． 34 ¢322092c＊ú | ．998こ2：9c2E，07 | 0. |  | ．1023104j9E＋CS | 0.01230 | 0.75415 |
| $3 \mathrm{cu.0}$ | 0. | － 729510218 E （b7 | 1. |  | － $729510216 \mathrm{E}+07$ | 0.01117 | 0． 75533 |
| 390.0 | 0. | ． $729273040 \underline{0}+07$ | 0. |  | ． 729873040 c .07 | 0.00877 | 0． 78411 |
| 400.0 | 0. | ．3，0625339E＋07 | $n$. |  | －37Co263jEE＋07 | 0.90445 | 1）． 9 ¢ 855 |
| 410.0 | 0. | －30JE1EJ90t＋u7 | 0. |  | － $300 \leq 187905+1) 7$ | 4）．00362 | 0.97218 |
| 420.0 | 0. | ． $364880948 \mathrm{c}+37$ | 0. |  | ． 364880948 E － 07 | 0.00433 | 0.97655 |
| 430.0 | 0. | － $379205512 \mathrm{E}+36$ | 0. |  | ． 3 ）921155：2E406 | 0.00046 | 0.97702 |
| 440.0 | 0. | － $101456732 E+07$ | ）． |  | ． $101456732 \mathrm{E}+07$ | 0.00122 | 0.97824 |
| 450.0 | 0. | ． $37.205512 \mathrm{c}+06$ | 0. |  | － 3 19205512E＋06 | 0.00046 | 0.97869 |
| 460.0 | 0. | ． $109619255 \mathrm{~F}+06$ | 0. |  | －189602756E．196 | 0.00023 | 0．77E9？ |
| 4EU．U | 0. | － $30787525 E E+06$ | ๆ． |  | －3078752685406 | 0.00037 | 0.97929 |
| 490.0 | 0. | － $189502756 E+06$ | 0. |  | ． $189602756 \mathrm{~F}+06$ | 0.30023 | 0．4y95？ |
| total | ．4731695430＋6） | － $354394246+09$ | 1. |  | －E315637E4Eかす9 |  |  |



Table D-6.--Continued.
total ali strata SPECIES 10130 HIPPOGLOSSOIOES ELASSODDN FLATHEAD SOLË

| LENGTH(MY) | - malej |
| :---: | :---: |
| 490.0 | 0. |
| 20U.0 | c. |

fotin
$.200801468 E+09$

* UNSEXEO ** **TRAL ***
* FEMALES ** -6415353016+05 -641603501f+1)5


0. 
1. 
2. 

$10198632 C E+02$ 1). $0011: 6$

CUAULATIVE PROPJRIION 0.97989 0. 98005

```
Table D-7.--Population estimates by sex and size group for Alaska plaice.
```


toral all strata
SPECIES 10115 REINIIARDTJUS HIPPOGLOSSOIDES GREENLANC TURBOT
LENGTH（NM）
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
260.0
290.0
300.0
310.0
320.0
330.0
340.0
350.0
360.0
370.0
300.0
530.0
400.0
420.0
420.0
430.0
440.0
450.0
460.0
470.0
$4 E 0.0$
490.0
500.0
510.0
520.0
－2014314S2E40
－ 21474 2344F＋N7
－5412ら2062E－07
－ $153695747 E+05$
$\begin{aligned} & \text {－2á1600：31F＋uc } \\ & 20968130 \mathrm{E}=100\end{aligned}$
－2J968130E 11400
$\begin{aligned} & -174314 \text { ：} 69 E+02 \\ & 896491983 F+07\end{aligned}$
5754713586407
－ $315304530 \mathrm{c}+01$
$\begin{aligned} & -315304530 c+01 \\ & -51631336 E E+07\end{aligned}$
$\begin{array}{r}\text {－} 516315306 E+07 \\ \text {－} 5020900 y 7 E+07\end{array}$
－ 62 ！100141F＋J7
－E60775362E＋07
－120́21J714E＋JO
－11594461F＋96
－143263637ctog
－ $155723009 E+00$
－2UU49745EF＋DE
－187354580c＋08
$147197163 E+0$
$1328919+3 E+$ U
$7 \pm 3476545 E+07$
． $632321773 \mathrm{~F}+47$
$.475871030 \mathrm{E}+07$
－457025314E゙ U U
$-57 y>543<4 t+v i$
－396189 $3255+07$
251：16805t＋07
19340670 EF
$\begin{aligned} & 193406706 F \cdot i 17 \\ & 153933 \mathrm{~B} 3 \mathrm{E} 407\end{aligned}$
－ 742947602 E 4 a
－ $947564452 F+06$
－629354 266 c +06
－ 552094535 E 406
－405726－37f＋06
． 280321210 E＋ 05
． $234236153 E+06$
.754202305005
－ 2470443 C3E 4 リO



DROPORTITN 0.00072 0.00625 0.03145 0.07027 0.10060 0.09041 0.06953 0.06953 .03045 0.01589 1.30971 0.01311 0.01354
0.01713 0.01773 0.02139 0.02131 0.03021 0.04051 0.04736 0.05445 0.05445 0.0430 0.04236 0.03342 0.02382 J．01694 0.01573 $0.01 \in \geq 0$ 0.01548 0.01228 $0 \cdot 012$ ． 1006 －0．067 0.067 － 101 0.00282 0.00252 0.00274 0.00194 0.00237 0.00170 0.00162 0.00099 0.00197 0.00084 0.00033

CUMULATIVE PREPARIIDV 0.00072 0.00720 0.03866 0.10893 0.21753 0.30794 0.31741 0.40792 0.42381 0.42381 0.44663 0.46027 0.47791 0.49929 0.52660 ． 55682 0.59743 0.644 El 0.69927 0.16967 0.82329 0.84711 0.66605 0.85198 ． 90019 0.92795 0.9390 e 0.94598 0.95295 0.95574
0.95855
0.76107

D． 363 ci 0.96575
0.96814

0． 76984
0.97146
0.97245
0.97343
0.97426
0.97490

Table D-8.--Continued.

tutal all strata
SPECIES $\mathbf{~} 0$ IID ATHERESTRES STOMIAS
ARROHTODIH FLOUNOFR

| LENGTH（MA） | males | ＊FEMALES | ＊UNSEXED | ＊＊＊Total＊＊ | PROPDRIION | cumulativa PFGPORTIO： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.0 | 2. | ． 347260455 E 05 | 0. | ． $347260455 \mathrm{E}+05$ | 0．000：á | 0.00016 |
| iv．o |  | ． $104178136 \mathrm{c}+36$ | $n$. | ．181801081F＋46 | 0.000 E 5 | 0.00101 |
| Ev．u | ． $116434358 E+06$ | ． $388114626 E+05$ | 0. | ． $1552453505+06$ | － 0.00072 | 0.00174 |
| 90.0 | ． $155245850 \varepsilon+06$ | ． 7782292518.05 | 0. | ． 232868775 Cl 06 | 0.00107 | 0.00232 |
| 100.0 |  | $.2179412417 \mathrm{~F}+06$ | －2109515く1F＋d6 | －10626E747F＋17 | U．00476 | 0.110778 |
| 11.00 | ．201413EOんE＋0゙ | ．15才4ट0712ビ06 | ． $439863242 E+06$ | ． $902 \mathrm{i} 976395+06$ | 0.00375 | 0.01153 |
| 120.0 | 0. | 0. | ．5013924日6E＋06 | ． 5013924 ¢6［406 | 0.00236 | 0.01381 |
| 133.0 | ．184587T31F．U5 | ． 616821681 E 05 | ．3181：6135foi） |  | 0.00230 | 0.01653 |
| 140.0 | － $291031569 \ddot{4}+06$ | ． $393762888 \mathrm{E}+06$ | ． $1845877315+06$ | －8693P2Io7E40́ | 0.00406 | 0.02059 |
| 150.0 | ． $127605194 \mathrm{E}+07$ | ． $503493273 E+06$ | －6i5232431E＋U5 | －183810445E＋07 | 0.00850 | 0.92917 |
| 1 cc .0 | ． 115711965 f 107 | － $140950542 \mathrm{E}+47$ | －164126257 Eご＋U6 | ． $276068765 E+07$ | 0.01289 | 0.04206 |
| 170.0 | ．1250677215407 | ． $1322876155+07$ | － 245591819 C 06 | ． 282714519 E （07 | 0.01320 | 0.05526 |
| 180.0 | ． 12397650 EE＋D7 | ． $846076108 \mathrm{E}+06$ | －369175462F＋06 | ． $244591565 E+07$ | 0.01141 | 0.06667 |
| 190.0 | － $632282116 E+06$ | ． 670406404 ¢＋00 | －675t 21 GE1E＋J6 | －199951020E＋07 | 0.00933 | 0.07601 |
| 200.0 | ．130127207E＋07 | －556361？13E．06 | ．7996301685＋06 | － $265752336 E+07$ | 0.01241 | 0.04842 |
| 210.0 | －3c5269682E＋1才7 | ． $7674054565+36$ | －117） $52635 \mathrm{~F}+\mathrm{d7}$ | － $572982 \mathrm{E} 6 \mathrm{6F.4)7}$. | 0.02613 | 0.11517 |
| 220.0 | ． $126093093 \mathrm{~L}+08$ | ． $720912869 \mathrm{E}+06$ | －147670165E＋07 | ． $140065241 \mathrm{E}+0 \mathrm{~g}$ | 0.06537 | 0.18056 |
| 230.0 | －148071497E＋U8 | ． $139860479 \mathrm{E}+07$ | －904467月y9E406 | ．171902224E＋0E | 0.08025 | 0.26081 |
| 240.0 | ． 14967346851.8 | －220957！こ7F＋d7 | － $86140 \times 412 F+46$ | $.1802932155+08$ | 0.0 E417 | 0.34498 |
| 25u．0 | ． $9718745145+07$ | ． 2017273 345407 | ． 738350924 ë＋06 | ． $124743710 \mathrm{E}+0 \mathrm{~B}$ | 0.05824 | 0.40322 |
| 260.0 | ． $716922390 E+07$ | ． $160673479 \mathrm{E}+07$ | － $5533631.3 \mathrm{E}+06$ | ． $932972388 \mathrm{E}+07$ | 1． 04350 | 0.44678 |
| 270.0 | ． $7341265!1 F+47$ | ． 38385497 3E＋07 | ． 492233951 Et116 | － 116720455 Et 0 8 | 0.05449 | 0.50121 |
| 280.0 | ． $952793340 \mathrm{~L}+07$ | ． 536406688507 | ．675821681E．06 | ． $15568847 \mathrm{CE}+08$ | 0.07268 | 0.57375 |
| 270.0 | －91621450）E＋67 | ． $602205541 E+17$ | － $246116+15 E+46$ | －160293285E．08 | 0.07453 | 0.64879 |
| 300.0 | ． $600451677 \mathrm{~F}+07$ | ． $5229509600^{5}+17$ | D． | ． $1122502565+08$ | 0.05241 | 0.70119 |
| 310.0 | ． $307441522 E+07$ | －SEb593973E ${ }^{\text {S }}$ J7 | ．615292437E．J5 | － $962188420 \mathrm{E}+07$ | 0.04492 | 0.14611 |
| 520.0 | ． $200500522 E+07$ | － $232764222 F+07$ | 0. | － $432284744 E+01$ | 0.02023 | 0.70634 |
| 330.0 | $.110176484 E+07$ | ． $168148875 \vec{E}+07$ | 0. | ． $278325359 E+07$ | 0.01297 | 0.77934 |
| 540.0 | ． 721013504 E＋こ6 | － $740581525 \mathrm{E}+36$ | 0. | － $166159583 \mathrm{~S}+07$ | 0.00776 | 0.76707 |
| 350.0 | ．115112529E＋Ui | ． $815796378 E+46$ | ת． | ． $196472167 \mathrm{E}+J 7$ | 1）．00917 | 0.77627 |
| $\because 360.0$ | ． $539454556 L+05$ | ． $114520696 E+07$ ． | ． $6152924375+05$ | ．174519076E＊07 | 0.00815 | 0.30442 |
| 370.0 | ． $140338 \mathrm{C} 98 \mathrm{E}+6)$ | －161778983E407 | ．615232457E＋05 | －30E470705E＋07 | 0.01441 | 0．esee？ |
| 3 E0．0 |  | $\therefore 199692957 \mathrm{E}+07$ | D． | －302722303E＋07 | 0.01413 | 0．E32．95 |
| ； 390.0 | －$!345704 \times 4 \mathrm{c} 07$ | － 210068912507 | 7. | ． 3452454065407 | ． 0.01612 | 0.84901 |
| － 400.0 | －60：565？61E＋1自 | － $209493321 E+47$ | 0. | ． 2595.4954 7 +07 | 9.01259 | 0． 86166 |
| 410.0 | ． 675 224167ftús | －186335360E＋ 17 | $1)$. | ． $2535571795+07$ | 0.01135 | 0.87351 |
| 420.0 | －30201201sE＋06 | －155813：10ct07 | 0. | $.183094312 E+07$ | 0.00813 | 0.88225 |
| 436.0 | ． 55725770 BE＋以ら | －15646463EF607 | $1)$. | － $2121904095+07$ | 0.00971 | 0.89215 |
| 44iJ．0 | ． $452087725 \mathrm{E}+40$ | －11：3151：5c＋07 | ．615292437E 05 | ． $162746812 \mathrm{E}+07$ | 0.00760 | 0.84975 |
| 450.0 | －1098）3649E－06 | ．103073762E＋07 | 0.0152937 O | －114067327E＋07 | 0.00553 | 0.9050 e |
| 462.0 | ． $206577425 \mathrm{~F}+116$ | ． 635 íne 3 U3F＋1才 | n． | ． $642326330 \mathrm{E}+06$ | 0.00373 | 0． 709191 |
| 470.0 | 0．$=$ ： | ． $355652372 E+36$ | 0. | －355062372E．06 | 0.00166 | 0.91067 |
| 480.0 | 0. | ． $256005603 E+06$ | 0. | － $256005603 \mathrm{E}+176$ | 0.00120 | 0.91186 |

```
Table D-9.--Continued.
```

rutal all strata SPECIES ：0110 ATHEFESTHES STOMIAS AHROWTOOTH FLOUNDEG

| LENGIH（PA） | ＊＊HALES＊＊＊ | ＊females＊＊ | ＊＊UNSEXEO | ＊＊TCTAL＊＊＊ |
| :---: | :---: | :---: | :---: | :---: |
| 490．0 | 0. | ． 355462 と 27 ごU6 | n． | －JE5462827E＋06 |
| 500.0 | 0. | ． 314 c $38637 \mathrm{~F}+16$ | n． | － $314330637 E+16$ |
| 510.0 | 0. | ．122533352E＊OE | 0. | －1225333326．06 |
| ל20．0 | 0. | ． $132947116 \mathrm{E}+15$ | 0. | －132947116F＋06 |
| 530.0 | 9. | ． $4 \geq 3013550 t+15$ | 0. | －4230135505405 |
| \＄40．0 | 0. | ． $132947110 \mathrm{E}+06$ | 0. | －152947126E•06 |
| 550.0 | 8. | －122947156t＊6 | $n$ | －13294718EF＋06 |
| TUIAL | 111＊37－454E＋67 | －650く36534E＊3P | ．115c44614i＊ 08 | ． 1965825695.09 |




| LENGIH(MM) | - ** | malej | ** | ** | females | ** | * UNSEXED ** | ** TOTAL*** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -60゙.U | 0. |  |  | 10. |  |  | .172471010E+06 | . $172471010 \mathrm{E}+66$ |
| 690.0 | 0. |  |  | 0. |  |  | . $761525007 E \cdot 05$ | . 161525007 E 05 |
| 710.0 | $n$. |  |  | 1. |  |  | . $5479693995+05$ | . $5499893995+35$ |
| 740.0 | 0. |  |  | 0 . |  |  | . $299994700 E+05$ | . 2999947000505 |
| 760.0 | 0 . |  |  | 0. |  |  | $.4615303078 \cdot 05$ | . 461530307 E 05 |
| 940.0 | 0. |  |  | 0. |  |  | . $5337153085+05$ | . 53 71530EE + 1) |
| $\rightarrow 70.0$ | 0. |  |  | , . |  |  | . $679274029 E+05$ | . $679274029 \mathrm{c}+05$ |
| 1023.0 | 0. |  |  | 0. |  |  | . $4949911665+05$ | .499591166E+05 |
| 1320.0 | C. |  |  | d. |  |  | . $545444908 E+05$ | . 545444 9UEF4J |
| IJTAL | 0. |  |  | 0. |  |  | . $332921580 \mathrm{E} \cdot 08$ | . $132 \times 21580 \mathrm{C}+08$ |

PKOPDETIDN
0.01282 0.00566 0.00440 0.00223 0.00343 0.00343
0.00397 .00397 0.00505 0.00312
0.00405

CuMULATIVE PFOPORTION 0.95531 0.76011 0. 96545 0.96766 0.97109 D. 9750 0́ D. 97500 0.9601 D. 9E3E2 0.96788
APPENDIX E
Age Composition Estimates for Principal Species of FishAppendix E gives population estimates by age for commercially importantspecies of fish for the overall survey area and sexes combined. The computer-generated tables also give mean lengths (mm) and standard deviations of lengthsfor each age group. Population estimates for above and below key lengths arethose that fall either above or below the range of sizes covered by the age-length key.
Table Page
E-1. Population estimates by age for walleye pollock ..... 138
E-2. Population estimates by age for Pacific cod ..... 139
E-3. Population estimates by age for sablefish ..... 140
E-4. Population estimates by age for yellowfin sole ..... 141
E-5. Population estimates by age for rock sole ..... 142
E-6. Population estimates by age for flathead sole ..... 143
E-7. Population estimates by age for Alaska plaice ..... 144
E-8. Population estimates by age for Greenland turbot ..... 145
E-9. Population estimates by age for arrowtooth flounder ..... 146

Table E-1.--Population estimates by age for walleye pollock.

```
all sifata cumblineo
SFECIE: 21/40 ThERAGfa chalcogramma
    halleye pollock
```

males. ferales, and unsexed

| AGE CLASS | numeer | PROPDRTIDN | CUMULAIIVE NUMBER | cumulative PROPORTION | $\begin{array}{r} \text { MEAN } \\ \text { LENGIH } \end{array}$ | STD. DEV. OF LENGTH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ******** |  |  | ****** | ******* |
| BELOW MINIMUM |  |  |  |  |  |  |
| ker lengih | 12.377,244 | 0.0010 | 12.377 .244 | 0.0010 | 96.65 | 11.12 |
| 1 | 5.248.459.687 | 0.4253 | 5.260 .836 .931 | 0.4263 | 138.07 | 18.49 |
| 2 | 2.395.558.122 | 10.1941 | 7.656.395.054 | 0.6204 | 246.45 | 29.30 |
| 3 | 2.609.390.097 | 0.2114 | 10.265 .785 .150 | 0.8319 | 328.53 | 35.43 |
| 4 | 1,254.969,856 | 0.1017 | 11.520,755,007 | 0.9336 | 372.11 | 31.84 |
| 5 | $318,026,274$ | 0.0258 | $11,836,781,283$ | 0.9593 | 440.97 | 48.86 |
| 6 | 213.598.104 | 0.0173 | 12.052 .379 .387 | $\because 0.9766^{\circ}$ | 470.10 | 48.50 |
| 7 | 73.101.585 | 0.0059 | 12.125 .480 .972 | 0.9826 | 517.44 | 43.97 |
| 8 | 61,513.629 | 0.0050 | 12,186,994,600 | 0.9875 | 530.17 | 55.17 |
| 9 | 74,379.338 | 0.0060 | 12.261.373.938 | 0.9936 | 535.94. | 54.50 |
| 10 | 48.577 .851 | 0.0039 | 12.303.951.790 | 0.9975 | 534.15 | 56.36 |
| 11 | 17,107,468 | 0.0014 | 12,327,059,258 | 0.9589 | 565.88 | 67.89 |
| 12 | 13,395,331 | 0.0011 | 12.340 .454 .589 | 1.0000 | 535.43 | 57.10 |
| ABOVE MAXIHUH |  |  |  |  |  |  |
| KEY LENCTH | 297,733 | 0.0000 | $12,340,752,322$ | 1.0000 | 782.17. | 19.88 |
| T O P L | 1?.340.752.322 | 1.0000 | 12.340 .752 .322 | 1.0000 | 245.92 | 112.53 |

Table E-2.--Population estimates by age for Pacific cod.

| $\begin{aligned} & \text { Age } \\ & \text { class } \\ & \hline \end{aligned}$ | Number | Proportion | Cumulative number | Cumulative proportion | Mean length (mm) | Standard deviation of length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | --- | --- | --- | --- | --- | --- |
| 1 | 1,268,236,821 | 0.90984 | 1,268,236,821 | 1.90984 | 196.35 | 34.50 |
| 2 | 24,170,433 | 0.01734 | 1,292,407,254 | 0.92718 | 421.76 | 31.44 |
| 3 | 32,840,565 | 0.02356 | 1,325,247,819 | 0.95074 | 480.64 | 11.09 |
| 4 | 24,811,632 | 0.01780 | 1,350,059,451 | 0.96854 | 519.32 | 17.35 |
| 5 | 23,097,121 | 0.01657 | 1,373,156,572 | 0.98511 | 559.80 | 20.58 |
| 6 | 9,785,262 | 0.00702 | 1,382,941,834 | 0.99213 | 613.50 | 18.26 |
| 7 | 2,801,763 | 0.00201 | 1,385,743,597 | 0.99414 | 653.54 | 9.60 |
| 8. | 4,237,492 | 0.00304 | 1,389,981,089 | 0.99718 | 696.50 | 11.55 |
| 9 | 2,132,685 | 0.00153 | 1,392,113,774 | 0.00871 | 751.68 | 18.67 |
| $\geq 10$ | 1,798,146 | 0.00129 | 1,393,911,920 | 1.00000 | 779.14 | 60.51 |
| Total | 1,393,911,920 | 1.00000 | 1,393,911,920 | 1.00000 | 225.70 | --- |

Table E-3.--Population estimates by age for sablefish.

```
All strata combined
SPECIES 2OSIO ANOPLOPOMA FIHBRIA
        SABLEFISH
males, females, and unsexed
```



TOTAL
EMÓOFAGEルENGIH

42.290 .948 1.0000

NUMBER
NUMBER
$14,348,973$
$26,093,803$
$1,110,559$
637,463
100,150
1.0000

| CUMULATIVE |
| ---: |
| NUMBER |
| $* * * * * * * *$ |
| 14.348 .973 |
| 40.442 .775 |
| 41.553 .334 |
| 42.190 .798 |
| 42.290 .948 |
| $-0.0-0.0-0-0$ |
| 42.290 .948 |



MEAN LENGTH ******
287. 16
341.56
420.21
483.72
480.00
327.64

5TD. DEV. OF LENGTH ********
28.25 52.26
60.62
4. 83
0.00
58.10

Table E-4.--Population estimates by age for yellowfin sole.

```
gLL SIfAIA COMBINED
SPECIES 10210 LIMANOA ASPERA
    YELLOWFIN SOLE
Males. females. and unsexED
```

| AGE CLASJ | $\begin{gathered} \text { NUMBER } \\ * * * * * \end{gathered}$ | PROP ORTION <br>  | CUMULATIVE NUMBER ************** | cumulative PROPORTIDN ********** | $\begin{array}{r} \text { MEAN } \\ \text { LENGTH } \\ * * * * * * * \end{array}$ | STD. DEV. OF LENGTH ******** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BELCH MINIMUH |  |  |  |  |  |  |
| KEy lengih | $10,353,141$ | 0.0009 | 10,353.141 | 0.0009 | 100.00 | 0.00 |
| 3 | $48,289.950$ | 0.0040 | 58,643,091 | 0.0049 | 110.00 | 0.00 |
| 4 | 346.209.332 | 0.0289 | 406,852,422 | 0.0338 | 126.27 | 9.28 |
| 5 | 1.290,809,233 | 0.1072 | 1.697.661.655 | 0.1409 | 164.90 | 29.11 |
| 6 | 1.199.281.633 | 0.0996 | 2,896,943.2E8 | 0.2405 | 202.72 | 26.71 |
| 7 | 1.290 .230 .814 | 0.1071 | $4,187.174 .102$ | 0.3475 | 214.94 | 22.98 |
| 8 | 2.139 .436 .454 | 0.1776 | 6,326,610,556 | 0.5252 | 225.16 | 28:34 |
| 9 | 2.046.346.486 | 0.1699 | 8.372.957.042 | 0.6951 | 240.74 | 27.E2 |
| 10 | 1.457.956.952 | 0.1212 | 9.832 .953 .974 | 0. 8163 | 247.44 | 19.30 |
| 11 | 963.540 .460 | 0.0800 | 10.796 .494 .455 | n. 8963 | 250.23 | 26. 24 |
| 12 | 786.231.063 | 0.0653 | 11.582.725.538 | 0.9616 | 271.75 | 13.82 |
| 13 | 94,795.924 | 0.0079 | 11.677.521.461 | 0.9695 | 300.29 | 18.33 |
| 14 | 151,478,543 | 0.0126 | 11,829,000,1114 | 0.9621 |  | 12.73 |
| -15 | $101.352,617$ | 0.0084 | 11.930 .352 .621 | 0.9905 | 307.78 | 18.49 |
| -16 | 100,431,179 | 0.0083 | 12.030,783.800 | 0.9988 | 312.53 | 17.82 |
| - 17 | 13.708.982 | 0.0011 | $12,044,492.783$ | 1.0000 | 344.80 | 5.94 |
| ABUVE maximum |  |  |  |  |  |  |
| NEY LENGTH | 590.412 | 0.0000 | 12,045,083.195 | 1.0000 | 430.00 | 0.00 |
| TUTAL | 12.045 .083 .195 | 1.0000 | 12.045 .083 .195 | 1.0000 | 225.38 | 44.21 |

```
ALL STRATA CDMEINED
SPECIES:O2EO LEPIDOPSETIA BILINEATA
    ROCK SOLE
males. females. and unsexeo
```


NUMBFF
43.412 .625
177.292 .595
75.501 .335
$38.731,837$
45.411 .559
147.961 .693
133.619 .102
42.555 .157
33.876 .477
$31.240,057$
33.586 .367
13.822 .282
$6,098.987$
$2,628,345$
5.571 .720

Cumularivf

| cumulative | MEAN | STD. DEV. |
| :---: | :---: | :---: |
| PROPQRTION | LENGTH | OF LENGTH |
| ********* | ******* | ******** |
| 0.0522 | $14 E .62$ | 13.55 |
| 0.2654 | 163.16 | 12.58 |
| 0.3562 | 187.10 | 21.13 |
| 0.4028 | 229.11 | 16.06 |
| 0.4574 | 254.29 | 18.86 |
| 0.6353 | 265.74 | 31.36 |
| 0.1961 | 280.86 | 28.4e |
| 0.6473 | 269.29 | 27.44 |
| 0.8880 | 316.05 | 37.48 |
| $0.9250^{\circ}$ | 334.82 | 36.10 |
| 0.9660 | 332.28 | 38.17 |
| 0.9826 | 361.80 | 29.76 |
| 0.9898 | 404.97 | 19.64 |
| 0.9931 | 372.22 | 19.88 |
| 0.9998 | 410.56 | 29.11 |
| 1.0000 | 490.00 | 0.00 |
| ----------- | ------- | --------- |
| 1.0000 | 243.23 | 68.87 |

## LBOVE MAXIMUM



189.605
0.0522
0.2132
0.0908
0.0466
0.0546
0.1779
0.1608
0.0512
0.0407
0.0376
0.0404
0.0166
0.0073
0.0032
0.0067
$43,412,625$
$220,705,220$
$296,206,555$
$334,938,392$
$360,349,951$
$528,311,644$
$661,990,140$
$704,549,904$
$738,426,381$
$769,666,478$
$803,252,844$
$817,075,127$
$823,174,113$
$625,802,462$
$831,374,181$ 12. 58 15.06 18.86

Table E-6.--Population estimates by age for flathead sole.

```
all sirata comeInEd
SPECIES 1OI30 HIPPOGLOSSOIDES ELASSODON
                        fLATHEAD SOLE
```

malfos, females. and unsexed

| ACE CLASS | NUMBER | PROPORTION | CUAULATIVE NUMBER | cumul a tive PROPORIION | MEAN LENGTH | STD. OEV. OF LENGTH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ********* |  | ********** | ********** |  |  |  |
| 1 | 11.492.633 | 0.0292 | 11.492 .633 | 0.0292 | 78.70 | 7.09 |  |
| 2 | 7,042.342 | 0.0179 | $18,534,974$ | 0.0471 | 123.89 | 17.37 |  |
| 3 | 60.640.306 | 0.1542 | 79.175.281 | 0.2014 | 167.60 | 26.08 |  |
| 4 | 46.778 .810 | 0.1190 | 125,954.090 | 0.3203 | 207.83 | 26.09 |  |
| 5 | 42.798 .104 | 0.10 Ee | 168,752.195 | 0. 4292 | 233.25 | 25.09 | $\ldots$ |
| 6 | $18.0 \pm 6.520$ | 0.0459 | 165,788.715 | 0.4751 | 254.86 | 26.34 | $\stackrel{4}{\omega}$ |
| 7 | 20.014 .790 | 0.0509 | 206.803.505 | 0.5260 | 292.88 | 21.51 |  |
| 8 | 35.531 .810 | 0.0904 | 242.335.315 | 0.6163 | 300.80 | 26.00 |  |
| 9 | 47.825 .589 | 0.1216 | 290.160.904 | 0.3380 | 303.40 | 34.64 |  |
| 10 | 40.846 .817 | 0.1037 | 231.007-721 | 0.8418 | 307.73 | 32.70 |  |
| 11 | 19.826 .458 | 0.0504 | 350,834,209 | 0.8923 | 335.26 | 30.21 |  |
| 12 | 13.040 .504 | 0.0332 | 363.874 .713 | 0.9254 | 334.33 | 24.48 |  |
| 13 | 7.771.510 | 0.0198 | 371.646 .223 | 0.9452 | 356.78 | 34.60 |  |
| 14 | 4.957 .767 | 0.0126 | $376,603.993$ | 0.9578 | 359.38 | 33.37 |  |
| 15 | 5.535.121 | 0.0141 | 3E2,137.111 | 0.9719 | 356.22 | 28.96 |  |
| - 16 | 3.996 .831 | 0.0102 | 386.135.942 | 0.9821 | 389.31 | 42.C9 |  |
| 17 | 3.028 .891 | 0.0077 | $389,164,833$ | 0.9890 | 383.94 | 21.94 |  |
| -12 | 1.701.522 | 0.0043 | 390,866,355 | 0.9941 | 437.90 | 23.13 |  |
| 19 | 550.181 | 0.0015 | 391.456 .536 | 0.9756 | 424.63 | 4.99 |  |
| - 20 | 1.100 .658 | 0.0028 | 392.557.194 | 0.9984 | 459.40 | 17.25 |  |
| - 22 | 571.409 | 0.0015 | 393,128.603 | 0.9998 | 451.84 | 3.87 |  |
| AUUVE maximum |  |  |  |  |  |  |  |
| KEY LENGTH | 64,169 | 0.0002 | 393.192 .712 | 1. CCOO | 50c.co | 0.00 |  |
| 1014 L | $343.152,772$ | 1.0000 | 393.192 .772 | 1.00100 | 259.50 | 77.63 |  |

EnO OF aGE/LENGTH

Table E-7.--Population estimates by age for Alaska plaice.


Table E-8.--Population estimates by age for Greenland turbot.

```
all sirata combined
SPECIES 101:5 REINHARDTIUS HIPPOGLOSSOIOES
males. females. and unsexed
```

| age class | number |
| :---: | :---: |
| ******** | **** |
| 0 | 725.615 |
| 1 | 370.692.343 |
| 2 | 297.371.341 |
| 3 | 81,944,099 |
| - 4 | 11.730 .493 |
| 5 | 7.039.278 |
| 6 | 814,640 |
| 7 | 31.381 |
| $\varepsilon$ | 269.932 |
| 9 | 20.921 |
| 10 | 58.914 |
| 11 | 31.381 |
| 13 | 186.214 |
| 14 | 51.266 |
| 15 | 135,575 |
| 16 | 20.921 |
| 17 | 51,266 |
| 18 | 135.033 |

TCIAL
771.310.610

| PROP ORTION | cumulative number |
| :---: | :---: |
| ********* | ********* |
| 0.0009 | 125.615 |
| 0.4806 | 371.417.958 |
| 0.3855 | 668.789,299 |
| 0.1062 | 750,733.398 |
| 0.0152 | 762.463.891 |
| 0.0091 | 769.503.169 |
| 0.0011 | 770,317.809 |
| 0.0000 | 770.349.190 |
| 0.0003 | 770,619,122 |
| 0.0000 | 770,640,043 |
| 0.0001 | 770.698.936 |
| 0.0000 | 770.73n.337 |
| 0.0002 | 770.916 .551 |
| 0.0001 | 770.967.816 |
| 0.0002 | 771.103.391 |
| 0.0000 | 771.124.312 |
| 0.0001 | 771.175 .518 |
| 0.0002 | 771,310,610 |


| cumulative: PROPORTION | $\begin{array}{r} \text { YEAN } \\ \text { LENGTH } \end{array}$ | STD. DEV. OF LENGTH |
| :---: | :---: | :---: |
| ********* | ****** | ******* |
| 0.0009 | 100.00 | 0.00 |
| 0.4815 | 153.70 | 29.43 |
| 0.8671 | 274.58 | 32.48 |
| 0.9733 | 354.52 | 30.94 |
| 0.9885 | 425.61 | 45.42 |
| 0.9977 | 470.12 | 35.57 |
| 0.9987 | 513.78 | 5?.72 |
| 0.9958 | 650.00 | 0.00 |
| 0.9991 | 632.41 | 15.68 |
| 0.9991 | 630.00 | 0.00 |
| 0.5992 | 621.31 | 13.61 |
| 0.9992 | 650.00 | 0.10 |
| 0.9995 | 758.68 | 3.16 |
| 0.9996 | 850.00 | 0.00 |
| 0.9997 | 798.52 | 19.95 |
| 0.9978 | 750.00 | 0.00 |
| 0.9996 | 850.00 | 0.00 |
| 1.0000 | 826.06 | 32.57 |
|  | ------- | --------- |
| 1.0000 | 229.74 | 87.89 |

Table E-9.--Population estimates by age for arrowtooth flounder.

APPENDIX F
Age-Length Keys for Principal Species of FishAppendix $F$ gives the computer generated age-length keys (sexes combined)for commercially important species of fish from samples collected during the1978 survey.
Table Page
F-1. Age-length key for walleye pollock ..... 148
F-2. Age-length key for sablefish ..... 150
F-3. Age-length key for yellowfin sole ..... 152
F-4. Age-length key for rock sole ..... 154
F-5. Age-length key for flathead sole ..... 156
F-6. Age-length key for Alaska plaice ..... 158
F-7. Age-length key for Greenland turbot ..... 160
F-8. Age-length key for arrowtooth flounder ..... 163

197e GERING SEA SURVEY.
SPECAES 21740 Thfíagia ChALCLGAamma
HALLEYE POLLOCK


Table $F-1 .--C o n t i n u e d$.

1978 日ERING SEA SURVEY,
species 21740 theragra chalcogramma
halleye pollock


Table F-2.--Age-length key for sablefish.

- thls rey incluces data genefated artificiaily using limear
- interpolation to asján age oistributions io lqngth clajijes
- not representeu by real oata. the use of this metiod mujt
- be consjofefod ahen ainalyziac thf he sults of this paogran.
- lengit classes which haye been generated using interpolation.
- are manked with an asterisk (*).

1978 bering sea sufver,
SPECIES 20510 anoploponi fimbila
sablefish


Table F-2. --Continued.

```
THIS KEY INCLUDES DATA GENERATEC ARTIFICIALIY USING LINEAR
THLS KEY INCLUDES DATA GENENAIEC ARTIFICIALLY USING LINEAR
INIERPOLATIGN IO. ASSIGN AGE CISTRIBUTIONS JO LENGTH CLASSES
NOT REPRESENTED BY REAL OAIA. THE USE DF JHIS METHOD MUS
- BE CONSIDEREC WHEN ANALYZING THE RESULIS OF IHIS PNOGRAM.
* LENGTH CLAJSES HHICH HavE beEN GENERATED USING INTERPOLATION*
* ARE MARKED HITH AN ASTERISK (!).
```

1978 BERING SEA SURVEY.
SPECIES 20510 ANOPL GPOMA FIMBRIA
SABLEFISH


Table F-3.--Age-length key for yellowfin sole.

* IHIS KEY INCLUDES DAIA GENERATED ARIIFICIALLY USING LINEAR *
- INIEKFJLATIDN IO ASSIGN AGE DISTHIZUTIUNS TO LENGTH CLASSES *
- HOI REPRESENTFU UY REAL DATA. THF USF GF THIS MFIHOD MUST
- be consideñed mhen aíalyeing the resulis of this prcgram.
- LENGTH CLASSES WHICH HAVE BEEN GENERATED USING INTEAPOLATION: - ARE MARKED WIJH AN ASTEfISK (*).

1978 BERING SEA SURYEY,
SPECIES 10210 LIMANDA ASPERA
YELLUHFIN SCLE

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & A V G \\ & A G E \end{aligned}$ | $\begin{aligned} & \text { STC. } \\ & \text { DEV. } \end{aligned}$ | FREQUENEY | $\begin{array}{r} A G E \\ \mathbf{D} \end{array}$ | $\begin{array}{r} \text { CIN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ ? \end{gathered}$ |  | 4 | 5 | 6 | 7 | E | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | $26 *$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | 3.00 | 0.00 | 2 | 0 | 0 | 0 |  | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 120 | 4.000 | 0.00 | 3 | 0 | ! | 0 | $1)$ | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $J$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 130 | 5.00 | 0.60 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 140 | 4.50 | 0.71 | 2 | 0 | 0 | 9 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 150 | 5.00 | 0.00 | . 4 | 0 | $1)$ | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | i) | 0 | 0 | 0 | 0 | 0 | 0 |
| 160 | 5.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 170 | 6.50 | 1.29 | 4 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 1 E0 | 6. 80 | 1.17 | 15 | 0 | 4 | 0 | 0 | 0 | 4 | 2 | 3 | 5 | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 190 | 6.77 | 1.48 | 13 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 1 | 3 | 2 | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | $?$ |
| 200 | 7.67 | 1.35 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 5 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -10 | 7.53 | 1.74 | 19 | 0 | $1)$ | 0 | 0 | 0 | 3 | 3 | 3 | 4 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
| 220 | 7.E | 1.06 | 17 | $1)$ | $1)$ | 1) | 0 | 0 | 1 | 2 | 5 | 3 | 3 | $?$ | 1 | 0 | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $1)$ | 0 | 0 | 0 | 0 |
| 230 | 8.50 | 1.59 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 5 | 3 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0. | 0 |
| 240 | 8.72 | 1.45 | : ${ }^{\text {d }}$ | 0 | 0 | 0 | ) | 0 | $n$ | 2 | 0 | 6 | 5 | 4 | 0 | 1 | 0 | 0 | ) | 0 | 0 |  | , | 0 | - | ) | 0 | 0 | c | C |
| $<50$ | 5.48 | 1.33 | 19 | 0 | 1 | 0 | 0 | $1)$ | $\bigcirc$ | 1 | 0 | 3 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $1)$ | 0 | 5 | 0 | 0 | 0 |
| 260 | 9.53 | 1.50 | 11 | 0 | c | 0 | 0 | 0 | c | 0 | 1. | 3 | 6 | 3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 210 | 9.88 | 1.50 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ! | 2 | 3 | 5 | 2 | 3 | ) | 5 | 0 | 0 | 0 | 0 | $1)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 11.60 | 1. 35 | 15 | 9 | 0 | 0 | 0 | 1 | $1)$ | ) | i) | 1 | $n$ | 1 | 3 | a |  |  |  |  |  |  |  | d | , |  | , | ) | 0 |  |
| く90 | 11.46 | 2.63 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 2 | 2 | c | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 1 | 4 | 0 | 0 |
| 300 | 12.00 | 2.35 | 14 | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 |  | 2 | 1 | 2 | 3 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 3 | 0 | C |
| 310 | 13.67 | 3.08 | 6 | 0 | 0 | 0 | $1)$ | 0 | 0 | 0 | 0 | $1)$ | 1 | 11 | 1 | 0 | 0 | 1 | 11 | 3 | 0 | 0 | ) | 0 | 0 | 0 | 0 | $\eta$ | 0 |  |
| 320 | 13.29 | 0.49 | 1 | 0 | 4 | 0 | a) | 0 | 0 | 0 | a | 0 | 0 | 1 |  | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 330 | 15.33 | 0.58 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| . 340 | 16.50 | C.71 | 2 | 0 | 0 | 0 | 1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0) | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | $1)$ | 0 | 0 | 1 | 0 |
| 350 | 16.29 | 1.07 |  | 0.0 |  | 0.0 |  | $0.1)$ |  | 0.0 |  | 0.0 |  | 0. ${ }^{1}$ |  | 0.0 |  | 0.0 |  | 0.75 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |
|  |  |  | 1.75 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | C. 0 |  | 0.25 |  | 0.75 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  |
| 360 | 16.00 | 1.41 |  | 0.0 |  | 0.1 |  | 0.0 |  | 0.0 |  | 0.0 |  | $0.1)$ |  | 0.1) |  | D. 1 |  | 0.5 |  | 0.0 |  | 0.0 |  | 1).1) |  | 0.0 |  | 0.0 |
|  |  |  | 1.5 |  | U.0) |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | O. C |  | 0.5 |  | 0.5 |  | 0.0 |  | 0.0 |  | 0.0 |  | C. 0 |  |
| 370 | 15.60 | 1.79 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 7. 0 |  | 0.25 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0 |  | 0 |
|  |  |  | 1.25 |  | 0.1) |  | 0.10 |  | 0.7 |  | 0.7 |  | 0.0 |  | 0.0 |  | 0.11 |  | 0.75 |  | 1.25 |  | 0.0 |  | 0.0 |  | 0.0 |  | C. 0 |  |

Table F-3.--Continued.


- This ker Includes data generated artificially using linear *
- IATERPClation to assicn aee distriautions to length classes
- NDI FEPRESFNTED BY REAL DATA. THF USE GF THIS METHOD MUST
- NOI KEPRESFNTED BY REAL DATA. THF USE CF IHIS METHOD MUS
- LEMGIK ClasSes which have eeen generatec using interpolatione
- ARE MARKED HITH AN ASTERISK (*).

1976 日ERING SEA SURYEY.
SPECIES 10210 LIMANDA ASPERA
YELLOWFIN SOLE


Table F-4.--Age-length key for rock sole.

- THIS KEY INCLUUES DASA GENERATEC AGTIFICIALLY USINE LINEAB
- INIERPOLATION TO ASSIGN ACF DISTHJBUTIGNS IO LENGTH CLASSES
- INIERPQLATIGN ID ASSIGN ACF DISTRIGUTIGNS TO LENGTH CLASSES
* MCI REPRESENTEJ BY SEAL DATA. THE USE DF IHIS METHOD MUS
- GE CONSIDERED HHEN ANALYZING IHE RESULIS OF THIS PROGRAM.
- 
- lengih classes hhich have alen jenerated using interpolaifon
- are marked hith an astefisk (*).
t97e reflag sea survey.
SPECIES 10200 LEPIDOPSETTA BILINEATA
reck sule


Table F-4.--continued.


- THIS KFY INCLUDES DATA GENERAIED ARTIFICIALLY USING LINEAG
- IATEFPGLATION IO ASSIGN AGE OISTRIBUTIENS TO LENGTH CLASSES
- NDT REPRESENJED BY REAL DAJA. THE USE DF THIS METHOD MUST
- BE CONSIDERED HHEN ANALYZING TiEE FESULYS OF IHIS PROEFAM.
- LENGTh Classes hhich have been generated using interpolation
- ARE MARKED WITH AN ASTERISK (*).

1978 EERING SEA SURVEY,
SPECIES 10260 LEPIDOPSETTA BILINEAT
ROCK SOLE


Table F-5.--Age-length key for flathead sole.

- this xer includes data generateo artificially using liaear
- INIERPOLATION TO ASSIGN GGE DISTEIBUTIONS IO LENGTH CLASSES
- NOI EEPFESENTED BY REAL DAIA. IHE USE DF THIS METHDD MUSJ
- EE cQNSIUERFD WHEN ANALYZING THE RE SULTS OF THIS PHOGRAM.
- LENGTH CLASSES HHICH HAVE BEEN GEINERATED USING INTERPOLATION - afe marked with an asterish (*).

1978 BEFING SEA SURVEY,
SPFCIES 10130 HIPPOGLOSSOICES ELASSODGN
FLATHEAD SOLE


```
Table F-5 .--Continued.
```

*********************

- IHIS KEY INCLUDFS DAIA GENERATED AFTIFICIALLY USING LINFAR
- INTERPOLATION JD ASSIGN AGE CISIKIBUIIUNS IO LCNGTH CLASSES
- NOT REPRESENIED BY REAL UATA. THE USE DF IHIS ME THDD MUST
- Ge considered when analyzing the aesults of this pfogram.
- LENGTH CLASSES WHICH HAVE BEEN GENERATED USING INTERPOLATION
- are marked hith an asterisk (*).

1978 BERING SEA SURVEY.
SPECIES 10130 HIPPOGLOSSOIDES ELASSODON
flathead sile


Table F-6.--Age-length key for Alaska plaice.

- THIS KEY INCLUDES DATA GENERATED ARTIFICIALLY USING LINEAR
- INTERPDLATION TO ASSISN aGE DISTRIGUTIDNS IO LENGTH CLASSES
- NOT fepresented by real data. the use of this methco must
- BF CONSIJERED WHEN ANALYZING THE FESULTS OF THIS PROGRAM.
- LENGTH CLASSES hHICH have been generateo using interpolation - ARE HARKED KITH AN ASTEFISK (*).


## 1978 日ERING SEA SURVEY.

SPECIES 10285 PLEUAZ DNECTES GUADRITUBERCULATUS
ALASKA PLAICE


Table F-6.--Continued.

- this key Includes data eenerated aflificlally using linear
- INTEFPDLATIDN TO ASSIGN AGE DISTRIBUTIONS TO LENGTH CLASSES *
- NOT HEPEESENTED BY REAL DATA. IHE USE OF IHIS METHOD MUST
- HE CONSIUERED WHEN ANALYZING THE RE SULIS DF THIS PROGRAM.
- LENGTH CLASSES NHICH HAVE BEEN GENERATED USING INTEAPOLATION. - are harkeo bljit an astefisk (*).

1918 BEHING SEA SURVEY.
SPECIES $20 \angle E S$ PLEURONECTES CUADRITUBEACULATUS
alaska plaice


Table F-7.--Age-length key for Greenland turbot.


- Interpolation to assign age cistrigutions to length classes
- not representej by feal data. the use cf ihis method must
- be considefed when analyziyg the results of this program.
- Lengit classes initch have been generated using interpolation*
- afe marked hiti an asterisk (*).

1976 afring sea survey.
SPECIES 10125 REINHABITIUS HIPPOGLOSSOIDES
gREENLAND TURBOT


Table F-7.--Continued.

- THIS KEY IHCLUOES DATA GENERATED ARTIFICIALLY USING LINEAR
- INTEAPOLATIOR TO ASSIGN AGE DISTAIBUTIONS IO LENGTH CLASSES
: 1NTEGPGLATIONTOASSIGN AGE DISTHBUTIONS IO LENGTH CLASSES
- not reprejenteo by real data. the use of ihis me thod must
- lfmgth classes uhich have beect generated usimg interpolation: - abe marked mith an asterisk (o).

197 e bealng sea survey.
SPECIES IUILS REINHAROTIUS HIPROGLOSSOSDES
GREENLAND IURBDT


Table F-7.--Continued.

- Ihis key includes data cenerateo artificially using lineaf
- Infefpdlation to assign age distrigutions to leng th classes
- Not representeo by real data. the use cf this methoo must
- 日f considfred when analyzing the fesulis of this pfogfim.
- LENGTK CLASSES HHICH HAVE bEEN GENERATEC USING INTERPGLATION. - afe markeo hlith an asterisk (*).
- e e e e e to w

197 a bering sea jurvey,
SPECIES 10125 REINHARDTJUS HIPPQGLOSSOIDES
GREENLAND IURBOT


Table F-8.--Age-length key for arrowtooth flounder.

- THIS KEY INCLUDES DATA GENCRATED ARTIFICIALLY USING LINEAR
- INIERPOLATION TO ASSIGN AGE diStaitutions to Leng th Classes
- noi mepresented by feal daia. the use of this method hust
- ge consioered uhen analtizing the re sults of this program.
- lengjh classes which have been generated using interpolation.
- are marked witm an astehisk (o).

197e berang sea surver.
SPECIES 80116 ATHERESTAES STONIAS
ARROUTGOTH FLOUNDER


Table F-8. --Continued.

- IHIS KEY INCLUDES DATA GENERATED ARTIFICIALIY USING LINEAF
- INTEFPDLation to assign age distributions to lengit classes
- Not fepaesenteu by real data. the use of ihis method must - af CONSIDEfED NHEN ANALYZING THE RE SULTS OF THIS PROGRAM.
- lengit classes mhich have geen generateo using interpolatione - afe marked with an asterisk (*)

1978 BERING SEA SURVEY.
species luild alheresthfs stomias
GKOMTOOTH FLOUNDEK

| $\begin{aligned} & \text { LEN } \\ & \text { GIH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DF. } \end{aligned}$ | FREQUENCY | $\begin{aligned} A G E \\ 0 \end{aligned}$ | CIN | $\begin{gathered} \text { YEAK } \\ 2 \end{gathered}$ | (is) ${ }_{3}$ | 4 | 5 | 6 | 7 | P | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | $1 \varepsilon$ | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *** | ** | *** | **** | *** | *** | *** | ** | *** | *** | *** | * | *** | -** | *** | *** | ** | *** | *** | *** | *** | *** | *** | ** | *** | *** | ** | ** | . | . $\cdot$ | ** |
| 310 | 5.00 | 0.82 | 1 | $\checkmark$ | 0 | 0 | 0 | 2 | 3 | 2 | 0 | 0 | 0 | $\dagger$ | 0 | , | 0 | 0 | 0 | $\square$ | 0 | 0 | 0 | 0 | 0 | 0 | $\checkmark$ | 0 | $\checkmark$ | 0 |
| 3 Eu | 5.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 390 | 6.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | 0 | c | 2 | 0 | 0 | 0 | 0 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 400 | 5.33 | 0.58 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , | 0 | 0 | 0 | 0 | , | , | 0 | ) | 0 | 0 | 0 | 0 |
| 410 | 5.60 | 0.55 | 5 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | ) | 0 | $n$ | 0 | a | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | $\square$ | 0 | $0 \stackrel{+}{\circ}$ |
| 420 | 6.33 | 1.15 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | $0 \pm$ |
| 430 | 6.00 | 0.82 | 4 | 0 | c | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 440 | 6.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0. | 0 | 0 | 0 | 0 |
| 450 | 6.50 | 0.00 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.5 |  | 0.0 |  | 0.0 |  | 0.0 |  | C. 0 |  | c. 0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |
|  |  |  | 1.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.5 |  | 0.0 |  | c. 0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  |
| $4 \in 0$ | 1.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\checkmark$ | 0 | 0 | 0 | 0 | 0 | c |
| OIAL | 2.54 | 1.56 |  | 21.5 |  | 84.0 |  | 19.0 |  | 11.5 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |
|  |  |  | 267.5 |  | 24.0 |  | 80.0 |  | 17.0 |  | 4.5 |  | 0.0. |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  | 0.0 |  |


[^0]:    Total effort $=819.1$ ha.
    b Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=217.77 \mathrm{~kg} / \mathrm{ha}$.

[^1]:    ${ }^{a}$ Total effort $=144.7$ ha.
    b Proportion of total CPUE, all fish and invertebrates combined. 'Total CPUE $=286.83 \mathrm{~kg} / \mathrm{ha}$.

[^2]:    ${ }^{\text {a }}$ Total effort $=138.4$ ha.
    ${ }^{b}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=212.60 \mathrm{~kg} / \mathrm{ha}$.

[^3]:    ${ }^{a}$ Total effort $=75.6$ ha.
    ${ }^{b}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=168.65 \mathrm{~kg} / \mathrm{ha}$.

[^4]:    ${ }^{\text {a }}$ Total effort $=210.2$ ha.
    ${ }^{b}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=179.75 . \mathrm{kg} / \mathrm{ha}$.

[^5]:    ${ }^{a}$ Total effort $=62.8 \mathrm{ha}$.
    ${ }^{\text {b }}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=142.79 \mathrm{~kg} / \mathrm{ha}$.

[^6]:    ${ }^{\text {a }}$ Total effort $=132.3 \mathrm{ha}$.
    ${ }^{\text {b }}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=293.56 \mathrm{~kg} / \mathrm{ha}$.

[^7]:    ${ }^{\text {a }}$ Total effort $=55.1$ ha.
    ${ }^{b}$ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=69.44 \mathrm{~kg} / \mathrm{ha}$.
    ${ }^{\text {C }}$ Based on more recent survey data, this species was probably misidentified and should be sparse toothed lycod (Lycodes raridens)

[^8]:    a CPUE $=$ catch per unit of effort.
    c $95 \%$ confidence interval $=1,761,351-2,855,846$.

[^9]:    ${ }^{a}$ Minor differences between sums of figures by subarea and year-classes and totals are due to rounding.

[^10]:    a CPUE = catch per unit of effort.
    b 95\% confidence interval $=89,855-540,135$.
    $c$ Minor differences between sums of figures by subarea and totals are due to rounding.

[^11]:    a CPUE = catch per unit of effort.
    b 95\% confidence interval $=64,243-67,413$.
    $c$ Minor differences between sums of figures by subarea and totals are due to rounding.

[^12]:    Figure 13. --Length and age composition of sablefish (sexes combined) from the overall 1978 survey area.

[^13]:    a CPUE = catch per unit of effort.
    b 95\% confidence interval $=1,293,279-2,116,145$.
    c Minor differences between sums of figures by subarea and totals are due to rounding.

[^14]:    ${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.

[^15]:    a CPUE = catch per unit of effort.
    b 95\% confidence interval $=130,377-225,062$.
    $c$ Minor differences between sums of figures by subarea and totals are due to rounding.

[^16]:    ${ }^{a}$ Minor differences between sums of figures by subarea or year-class and totals are due to rounding.

[^17]:    Figure 22. --Length and age composition of flathead sole (sexes combined) from the overall 1978 survey area.

[^18]:    a CPUE $=$ catch per unit of effort.
    b 95\% confidence interval $=77,932-252,523$.
    C Minor differences between sums of figures by subarea and totals are due to rounding.

[^19]:    a CPUE $=$ catch per unit of effort.
    b 95\% confidence interval $=91,121-125,138$.
    c Minor differences between sums of figures by subarea and totals are due to rounding.

[^20]:    Figure 28. --Length and age composition of Greenland turbot (sexes combined) from the overall 1978 survey area.

[^21]:    ${ }^{\text {a Minor }}$ differences between sums. of figures by subarea or year-class and totals are due to rounding.
    ${ }^{6}$ Population estimates derived from ageing studies differed from those derived from biomass studies because occasionally weights and numbers were collected for this species, but no length-frequencies were taken.

